BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11934578)

  • 21. Synthesis and binding of [125I2]philanthotoxin-343, [125I2]philanthotoxin-343-lysine, and [125I2]philanthotoxin-343-arginine to rat brain membranes.
    Goodnow RA; Bukownik R; Nakanishi K; Usherwood PN; Eldefrawi AT; Anis NA; Eldefrawi ME
    J Med Chem; 1991 Aug; 34(8):2389-94. PubMed ID: 1652018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of conformational constraints in the polyamine moiety of philanthotoxins on AMPAR inhibition.
    Franzyk H; Grzeskowiak JW; Tikhonov DB; Jaroszewski JW; Mellor IR
    ChemMedChem; 2014 Aug; 9(8):1725-31. PubMed ID: 25044789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid phase syntheses of polyamine toxins HO-416b and PhTX-433. Use of an efficient polyamide reduction strategy that facilitates access to branched analogues.
    Wang F; Manku S; Hall DG
    Org Lett; 2000 Jun; 2(11):1581-3. PubMed ID: 10841484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A sequential high-yielding large-scale solution-method for synthesis of philanthotoxin analogues.
    Wellendorph P; Jaroszewski JW; Hansen SH; Franzyk H
    Eur J Med Chem; 2003 Jan; 38(1):117-22. PubMed ID: 12593922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors.
    Inserra MC; Kompella SN; Vetter I; Brust A; Daly NL; Cuny H; Craik DJ; Alewood PF; Adams DJ; Lewis RJ
    Biochem Pharmacol; 2013 Sep; 86(6):791-9. PubMed ID: 23924607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-activity relationships of methoctramine-related polyamines as muscular nicotinic receptor noncompetitive antagonists. 3. Effect of inserting the tetraamine backbone into a macrocyclic structure.
    Bolognesi ML; Bixel MG; Marucci G; Bartolini M; Krauss M; Angeli P; Antonello A; Rosini M; Tumiatti V; Hucho F; Melchiorre C
    J Med Chem; 2002 Jul; 45(15):3286-95. PubMed ID: 12109912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strychnine: a potent competitive antagonist of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal neurons.
    Matsubayashi H; Alkondon M; Pereira EF; Swanson KL; Albuquerque EX
    J Pharmacol Exp Ther; 1998 Mar; 284(3):904-13. PubMed ID: 9495848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iptakalim as a human nicotinic acetylcholine receptor antagonist.
    Hu J; Lindenberger K; Hu G; Wang H; Lukas RJ; Wu J
    J Pharmacol Exp Ther; 2006 Feb; 316(2):914-25. PubMed ID: 16223869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins.
    Brackley PT; Bell DR; Choi SK; Nakanishi K; Usherwood PN
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1573-80. PubMed ID: 7690404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Labeling studies of photolabile philanthotoxins with nicotinic acetylcholine receptors: mode of interaction between toxin and receptor.
    Choi SK; Kalivretenos AG; Usherwood PN; Nakanishi K
    Chem Biol; 1995 Jan; 2(1):23-32. PubMed ID: 9383400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design, synthesis, and biological activity of 5'-phenyl-1,2,5,6-tetrahydro-3,3'-bipyridine analogues as potential antagonists of nicotinic acetylcholine receptors.
    Jin Y; Huang X; Papke RL; Jutkiewicz EM; Showalter HD; Zhan CG
    Bioorg Med Chem Lett; 2017 Sep; 27(18):4350-4353. PubMed ID: 28838693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor.
    Jozwiak K; Targowska-Duda KM; Kaczor AA; Kozak J; Ligeza A; Szacon E; Wrobel TM; Budzynska B; Biala G; Fornal E; Poso A; Wainer IW; Matosiuk D
    Bioorg Med Chem; 2014 Dec; 22(24):6846-56. PubMed ID: 25464883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-binding relation of philanthotoxins from nicotinic acetylcholine receptor binding assay.
    Nakanishi K; Huang X; Jiang H; Liu Y; Fang K; Huang D; Choi SK; Katz E; Eldefrawi M
    Bioorg Med Chem; 1997 Oct; 5(10):1969-88. PubMed ID: 9370041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An analysis of philanthotoxin block for recombinant rat GluR6(Q) glutamate receptor channels.
    Bähring R; Mayer ML
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):635-50. PubMed ID: 9596788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling noncompetitive antagonism of a nicotinic acetylcholine receptor.
    Tikhonov DB; Mellor IR; Usherwood PN
    Biophys J; 2004 Jul; 87(1):159-70. PubMed ID: 15240454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro and in vivo neuronal nicotinic receptor properties of (+)- and (-)-pyrido[3,4]homotropane [(+)- and (-)-PHT]: (+)-PHT is a potent and selective full agonist at α6β2 containing neuronal nicotinic acetylcholine receptors.
    Carroll FI; Navarro HA; Mascarella SW; Castro AH; Luetje CW; Wageman CR; Marks MJ; Jackson A; Damaj MI
    ACS Chem Neurosci; 2015 Jun; 6(6):920-6. PubMed ID: 25891987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design, synthesis, and biological evaluation of Erythrina alkaloid analogues as neuronal nicotinic acetylcholine receptor antagonists.
    Crestey F; Jensen AA; Borch M; Andreasen JT; Andersen J; Balle T; Kristensen JL
    J Med Chem; 2013 Dec; 56(23):9673-82. PubMed ID: 24187998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel alpha-conotoxins from Conus spurius and the alpha-conotoxin EI share high-affinity potentiation and low-affinity inhibition of nicotinic acetylcholine receptors.
    López-Vera E; Aguilar MB; Schiavon E; Marinzi C; Ortiz E; Restano Cassulini R; Batista CV; Possani LD; Heimer de la Cotera EP; Peri F; Becerril B; Wanke E
    FEBS J; 2007 Aug; 274(15):3972-85. PubMed ID: 17635581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of conformational constraints and steric bulk in the amino acid moiety of philanthotoxins on AMPAR antagonism.
    Jørgensen MR; Olsen CA; Mellor IR; Usherwood PN; Witt M; Franzyk H; Jaroszewski JW
    J Med Chem; 2005 Jan; 48(1):56-70. PubMed ID: 15634001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selectivity optimization of substituted 1,2,3-triazoles as α7 nicotinic acetylcholine receptor agonists.
    Arunrungvichian K; Fokin VV; Vajragupta O; Taylor P
    ACS Chem Neurosci; 2015 Aug; 6(8):1317-30. PubMed ID: 25932897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.