BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11934618)

  • 1. Phospholipid modifications in bacteria.
    Cronan JE
    Curr Opin Microbiol; 2002 Apr; 5(2):202-5. PubMed ID: 11934618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the Structural Biology, Mechanism, and Physiology of Cyclopropane Fatty Acid Modifications of Bacterial Membranes.
    Cronan JE; Luk T
    Microbiol Mol Biol Rev; 2022 Jun; 86(2):e0001322. PubMed ID: 35435731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclopropane fatty acyl synthase in Sinorhizobium meliloti.
    Saborido Basconcillo L; Zaheer R; Finan TM; McCarry BE
    Microbiology (Reading); 2009 Feb; 155(Pt 2):373-385. PubMed ID: 19202086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways.
    Cronan JE
    Biochimie; 2024 Mar; 218():137-151. PubMed ID: 37683993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of phospholipid membranes by thiyl radicals via cis-trans isomerization of fatty acid residues.
    Sprinz H; Adhikari S; Brede O
    Adv Colloid Interface Sci; 2001 Jan; 89-90():313-25. PubMed ID: 11215801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of salt on phospholipid fatty acid composition in Escherichia coli K-12.
    McGarrity JT; Armstrong JB
    Biochim Biophys Acta; 1975 Aug; 398(2):258-64. PubMed ID: 1101960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence.
    Rao V; Gao F; Chen B; Jacobs WR; Glickman MS
    J Clin Invest; 2006 Jun; 116(6):1660-7. PubMed ID: 16741578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodynamic oxidation of Escherichia coli membrane phospholipids: new insights based on lipidomics.
    Alves E; Santos N; Melo T; Maciel E; Dória ML; Faustino MA; Tomé JP; Neves MG; Cavaleiro JA; Cunha Â; Helguero LA; Domingues P; Almeida A; Domingues MR
    Rapid Commun Mass Spectrom; 2013 Dec; 27(23):2717-28. PubMed ID: 24591033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme.
    Mauger M; Ferreri C; Chatgilialoglu C; Seemann M
    J Inorg Biochem; 2021 Nov; 224():111564. PubMed ID: 34418715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselective cis-trans isomerization of arachidonic double bonds by thiyl radicals: the influence of phospholipid supramolecular organization.
    Ferreri C; Samadi A; Sassatelli F; Landi L; Chatgilialoglu C
    J Am Chem Soc; 2004 Feb; 126(4):1063-72. PubMed ID: 14746474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in positional distribution of fatty acids in the phospholipids of Escherichia coli after shift-down in temperature.
    Aibara S; Kato M; Ishinaga M; Kito M
    Biochim Biophys Acta; 1972 Jul; 270(3):301-6. PubMed ID: 4557430
    [No Abstract]   [Full Text] [Related]  

  • 12. How Do Cyclopropane Fatty Acids Protect the Cell Membrane of
    Maiti A; Kumar A; Daschakraborty S
    J Phys Chem B; 2023 Feb; 127(7):1607-1617. PubMed ID: 36790194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane lipid homeostasis in bacteria.
    Zhang YM; Rock CO
    Nat Rev Microbiol; 2008 Mar; 6(3):222-33. PubMed ID: 18264115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of bacterial cyclopropane-fatty-acyl-phospholipid synthase with phospholipid.
    Ma Y; Pan C; Wang Q
    J Biochem; 2019 Aug; 166(2):139-147. PubMed ID: 30828715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of bio-indigo in engineered Escherichia coli, reinforced by cyclopropane-fatty acid-acyl-phospholipid synthase from psychrophilic Pseudomonas sp. B14-6.
    Ham S; Cho DH; Oh SJ; Hwang JH; Kim HJ; Shin N; Ahn J; Choi KY; Bhatia SK; Yang YH
    J Biotechnol; 2023 Mar; 366():1-9. PubMed ID: 36849085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance.
    Brown JL; Ross T; McMeekin TA; Nichols PD
    Int J Food Microbiol; 1997 Jul; 37(2-3):163-73. PubMed ID: 9310851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of phosphoglycerides in Escherichia coli during growth at 37 degrees C and during a cold-induced lag phase.
    Bright-Gaertner E; Proulx P
    Biochim Biophys Acta; 1972 May; 270(1):40-9. PubMed ID: 4556607
    [No Abstract]   [Full Text] [Related]  

  • 18. Methoxylated fatty acids reported in Rhizobium isolates arise from chemical alterations of common fatty acids upon acid-catalyzed transesterification procedures.
    Orgambide GG; Reusch RN; Dazzo FB
    J Bacteriol; 1993 Aug; 175(15):4922-6. PubMed ID: 8335647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems.
    Mizoguchi T; Tsukatani Y; Harada J; Takasaki S; Yoshitomi T; Tamiaki H
    Bioorg Med Chem; 2013 Jul; 21(13):3689-94. PubMed ID: 23669190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid fatty acid profiling of microbial communities--a review of interpretations and recent applications.
    Willers C; Jansen van Rensburg PJ; Claassens S
    J Appl Microbiol; 2015 Nov; 119(5):1207-18. PubMed ID: 26184497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.