These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11936098)

  • 1. Potentiometric phosphate-sensing system utilizing phosphate-binding protein.
    Kubo I
    Anal Bioanal Chem; 2002 Jan; 372(2):273-5. PubMed ID: 11936098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate binding protein as the biorecognition element in a biosensor for phosphate.
    Salins LL; Deo SK; Daunert S
    Sens Actuators B Chem; 2004 Jan; 97(1):81-9. PubMed ID: 14997877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of a bilayer potentiometric phosphate biosensor by cross-link immobilization with bovine serum albumin and glutaraldehyde.
    Adeloju SB; Lawal AT
    Anal Chim Acta; 2011 Apr; 691(1-2):89-94. PubMed ID: 21458636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline phosphatase based amperometric biosensor immobilized by cysteamine-glutaraldehyde modified self-assembled monolayer.
    Yorganci E; Akyilmaz E
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Oct; 39(5):317-23. PubMed ID: 21663400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current-driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing.
    Ding J; Qin W
    J Am Chem Soc; 2009 Oct; 131(41):14640-1. PubMed ID: 19785410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate sensing by fluorescent reporter proteins embedded in polyacrylamide nanoparticles.
    Sun H; Scharff-Poulsen AM; Gu H; Jakobsen I; Kossmann JM; Frommer WB; Almdal K
    ACS Nano; 2008 Jan; 2(1):19-24. PubMed ID: 19206543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphate sensor.
    Engblom SO
    Biosens Bioelectron; 1998 Oct; 13(9):981-94. PubMed ID: 9839387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescent Escherichia coli strains for the quantitative detection of phosphate and ammonia in coastal and suburban watersheds.
    Cardemil CV; Smulski DR; Larossa RA; Vollmer AC
    DNA Cell Biol; 2010 Sep; 29(9):519-31. PubMed ID: 20491581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films.
    Zhang Z; Jaffrezic-Renault N; Bessueille F; Leonard D; Xia S; Wang X; Chen L; Zhao J
    Anal Chim Acta; 2008 May; 615(1):73-9. PubMed ID: 18440365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond potentiometry: robust electrochemical ion sensor concepts in view of remote chemical sensing.
    Bakker E; Bhakthavatsalam V; Gemene KL
    Talanta; 2008 May; 75(3):629-35. PubMed ID: 18585124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved phosphate biosorption by bacterial surface display of phosphate-binding protein utilizing ice nucleation protein.
    Li Q; Yu Z; Shao X; He J; Li L
    FEMS Microbiol Lett; 2009 Oct; 299(1):44-52. PubMed ID: 19686343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel and selective potentiometric membrane sensor for amiloride determination in pharmaceutical compounds and urine.
    Ensafi AA; Allafchian AR
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):802-6. PubMed ID: 18448303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress and recent advances in phosphate sensors: a review.
    Law al AT; Adeloju SB
    Talanta; 2013 Sep; 114():191-203. PubMed ID: 23953460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Nucleotide Hydrolysis Using Fluorescent Biosensors for Phosphate.
    Kunzelmann S
    Methods Mol Biol; 2021; 2263():289-318. PubMed ID: 33877604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric membrane electrodes for monohydrogen phosphate and sulfate.
    Fibbioli M; Berger M; Schmidtchen FP; Pretsch E
    Anal Chem; 2000 Jan; 72(1):156-60. PubMed ID: 10655648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-selective electrodes based on L-tryptophan and L-tyrosine.
    Moriuchi-Kawakami T; Tokunaga Y; Yamamoto H; Shibutani Y
    Talanta; 2012 May; 94():99-103. PubMed ID: 22608420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens.
    Gonzalez D; Richez M; Bergonzi C; Chabriere E; Elias M
    Sci Rep; 2014 Oct; 4():6636. PubMed ID: 25338617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A membrane protein based biosensor: use of a phosphate--H+ symporter membrane protein (Pho84) in the sensing of phosphate ions.
    Basheer S; Samyn D; Hedström M; Thakur MS; Persson BL; Mattiasson B
    Biosens Bioelectron; 2011 Sep; 27(1):58-63. PubMed ID: 21782409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the detection limits of antispasmodic drugs electrodes by using modified membrane sensors with inner solid contact.
    Ibrahim H; Issa YM; Abu-Shawish HM
    J Pharm Biomed Anal; 2007 May; 44(1):8-15. PubMed ID: 17383844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiometric evaluation of calix[4]arene anion receptors in membrane electrodes: phosphate detection.
    Kivlehan F; Mace WJ; Moynihan HA; Arrigan DW
    Anal Chim Acta; 2007 Feb; 585(1):154-60. PubMed ID: 17386660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.