These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11936109)

  • 1. Systematic optimisation of high-performance liquid chromatographic separation by varying the temperature, gradient, and stationary phase.
    Otto M; Schirmer A; Claussnitzer U; Pfeffer M
    Anal Bioanal Chem; 2002 Jan; 372(2):341-6. PubMed ID: 11936109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance liquid chromatography of seized drugs at elevated pressure with 1.7 microm hybrid C18 stationary phase columns.
    Lurie IS
    J Chromatogr A; 2005 Dec; 1100(2):168-75. PubMed ID: 16226267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput liquid chromatography with sub-2 microm particles at high pressure and high temperature.
    Nguyen DT; Guillarme D; Heinisch S; Barrioulet MP; Rocca JL; Rudaz S; Veuthey JL
    J Chromatogr A; 2007 Oct; 1167(1):76-84. PubMed ID: 17765255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput screening of active pharmaceutical ingredients by UPLC.
    Al-Sayah MA; Rizos P; Antonucci V; Wu N
    J Sep Sci; 2008 Jul; 31(12):2167-72. PubMed ID: 18563754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary phases in the screening of drug/impurity profiles and in their separation method development: identification of columns with different and similar selectivities.
    Van Gyseghem E; Jimidar M; Sneyers R; De Smet M; Verhoeven E; Vander Heyden Y
    J Pharm Biomed Anal; 2006 Jun; 41(3):751-60. PubMed ID: 16466886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line comprehensive two-dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part I: orthogonality and practical peak capacity considerations.
    D'Attoma A; Grivel C; Heinisch S
    J Chromatogr A; 2012 Nov; 1262():148-59. PubMed ID: 23022239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds.
    Grand-Guillaume Perrenoud A; Veuthey JL; Guillarme D
    J Chromatogr A; 2012 Nov; 1266():158-67. PubMed ID: 23092872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution.
    Jin CH; Lee JW; Row KH
    J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Orthogonal" separations for reversed-phase liquid chromatography.
    Pellett J; Lukulay P; Mao Y; Bowen W; Reed R; Ma M; Munger RC; Dolan JW; Wrisley L; Medwid K; Toltl NP; Chan CC; Skibic M; Biswas K; Wells KA; Snyder LR
    J Chromatogr A; 2006 Jan; 1101(1-2):122-35. PubMed ID: 16236292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a new 1,3-alternate-calix[4]arene-bonded HPLC stationary phase for the separation of phenols, aromatic amines and drugs.
    Erdemir S; Yilmaz M
    Talanta; 2010 Sep; 82(4):1240-6. PubMed ID: 20801324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents.
    Valleix A; Carrat S; Caussignac C; Léonce E; Tchapla A
    J Chromatogr A; 2006 May; 1116(1-2):109-26. PubMed ID: 16631181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of retention and overloading of basic compounds with mixed-mode reversed-phase/cation-exchange columns in high performance liquid chromatography.
    Davies NH; Euerby MR; McCalley DV
    J Chromatogr A; 2007 Jan; 1138(1-2):65-72. PubMed ID: 17083946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.
    Šatínský D; Brabcová I; Maroušková A; Chocholouš P; Solich P
    Anal Bioanal Chem; 2013 Jul; 405(18):6105-15. PubMed ID: 23657456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effects of mobile phase composition and temperature on the retention of homologous and polar test compounds on polydentate C8 column.
    Jandera P; Krupczyńska K; Vynuchalová K; Buszewski B
    J Chromatogr A; 2010 Sep; 1217(39):6052-60. PubMed ID: 20728897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral correlation of high-performance liquid chromatography-diode array detection data from two independent chromatographic runs peak tracking in pharmaceutical impurity profiling.
    Li W; Hu CQ
    J Chromatogr A; 2008 May; 1190(1-2):141-9. PubMed ID: 18374928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs.
    Fernández-Navarro JJ; García-Álvarez-Coque MC; Ruiz-Ángel MJ
    J Chromatogr A; 2011 Jan; 1218(3):398-407. PubMed ID: 21176907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the preparative separation of a chiral pharmaceutical intermediate by high performance liquid chromatography.
    Sajonz P; Natishan TK; Antia FD; Frenette R
    J Chromatogr A; 2005 Sep; 1089(1-2):135-41. PubMed ID: 16130781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimising reversed-phase liquid chromatographic separation of an acidic mixture on a monolithic stationary phase with the aid of response surface methodology and experimental design.
    Wang Y; Harrison M; Clark BJ
    J Chromatogr A; 2006 Feb; 1105(1-2):199-207. PubMed ID: 16413563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.