BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11936792)

  • 1. Study of bandwidth effects in monochromator-based spectral responsivity measurements.
    Boivin LP
    Appl Opt; 2002 Apr; 41(10):1929-35. PubMed ID: 11936792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Near-Infrared Spectral Responsivity Scale.
    Shaw PS; Larason TC; Gupta R; Brown SW; Lykke KR
    J Res Natl Inst Stand Technol; 2000; 105(5):689-700. PubMed ID: 27551631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of short-pulse-laser-based measurement setup for absolute spectral irradiance responsivity calibration.
    Schuster M; Nevas S; Sperling A
    Appl Opt; 2014 May; 53(13):2815-21. PubMed ID: 24921865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges.
    Rabus H; Persch V; Ulm G
    Appl Opt; 1997 Aug; 36(22):5421-40. PubMed ID: 18259363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations.
    Lehman JH; Vayshenker I; Livigni DJ; Hadler J
    J Res Natl Inst Stand Technol; 2004; 109(2):291-8. PubMed ID: 27366611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facility for spectral irradiance and radiance responsivity calibrations using uniform sources.
    Brown SW; Eppeldauer GP; Lykke KR
    Appl Opt; 2006 Nov; 45(32):8218-37. PubMed ID: 17068565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute spectral responsivity measurements of solar cells by a hybrid optical technique.
    Hamadani BH; Roller J; Dougherty B; Persaud F; Yoon HW
    Appl Opt; 2013 Jul; 52(21):5184-93. PubMed ID: 23872765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers.
    Ahtee V; Brown SW; Larason TC; Lykke KR; Ikonen E; Noorma M
    Appl Opt; 2007 Jul; 46(20):4228-36. PubMed ID: 17579678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ACR II: improved absolute cryogenic radiometer for low background infrared calibrations.
    Carter AC; Lorentz SR; Jung TM; Datla RU
    Appl Opt; 2005 Feb; 44(6):871-5. PubMed ID: 15751676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing a high-accuracy spectral response scale in the near infrared with digital filters.
    Gran J; Ellingsberg K; Sudbø AS
    Appl Opt; 2005 May; 44(13):2482-9. PubMed ID: 15881054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Laser-based radiometric calibration].
    Li ZG; Zheng YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3424-8. PubMed ID: 25881452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectral responsivity scale realization and validations.
    Eppeldauer GP; Podobedov VB
    Appl Opt; 2012 Sep; 51(25):6003-8. PubMed ID: 22945145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-field spectroscopic measurement of the X-ray beam from a multilayer monochromator using a hyperspectral X-ray camera.
    Boone MN; Van Assche F; Vanheule S; Cipiccia S; Wang H; Vincze L; Van Hoorebeke L
    J Synchrotron Radiat; 2020 Jan; 27(Pt 1):110-118. PubMed ID: 31868743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty Propagation for NIST Visible Spectral Standards.
    Gardner JL
    J Res Natl Inst Stand Technol; 2004; 109(3):305-18. PubMed ID: 27366615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency.
    Stoupin S; Shvyd'ko YV; Shu D; Blank VD; Terentyev SA; Polyakov SN; Kuznetsov MS; Lemesh I; Mundboth K; Collins SP; Sutter JP; Tolkiehn M
    Opt Express; 2013 Dec; 21(25):30932-46. PubMed ID: 24514666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the spectral bandwith of the spectrometer on the sensitivity using continuum source AAS.
    Becker-Ross H; Florek S; Heitmann U; Weisse R
    Anal Bioanal Chem; 1996 Jun; 355(3-4):300-3. PubMed ID: 15045392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral reflectance and responsivity of Ge- and InGaAs-photodiodes in the near-infrared: measurement and model.
    López M; Hofer H; Stock KD; Bermúdez JC; Schirmacher A; Schneck F; Kück S
    Appl Opt; 2007 Oct; 46(29):7337-44. PubMed ID: 17932548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of a zero-dispersion filter monochromator for image-spectroscopic measurements.
    Iwata T
    Appl Opt; 1999 Mar; 38(7):1191-5. PubMed ID: 18305731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%.
    Fox NP; Martin JE
    Appl Opt; 1990 Nov; 29(31):4686-93. PubMed ID: 20577452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source.
    Zaid G; Park SN; Park S; Lee DH
    Appl Opt; 2010 Dec; 49(35):6772-83. PubMed ID: 21151235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.