These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 1193703)

  • 1. Fuel economy during flight of the dragonfly Pantala flavescens (F).
    Kallapur VL
    Indian J Exp Biol; 1975 Mar; 13(2):200-2. PubMed ID: 1193703
    [No Abstract]   [Full Text] [Related]  

  • 2. Flight-oogenesis syndrome in a blood-sucking bug: biochemical aspects of lipid metabolism.
    Oliveira GA; Baptista DL; Guimarães-Motta H; Almeida IC; Masuda H; Atella GC
    Arch Insect Biochem Physiol; 2006 Aug; 62(4):164-75. PubMed ID: 16933278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of insect metathoracic muscle during electrical stimulation. The metabolic rate.
    Kubista V; Pohlová I
    Physiol Bohemoslov; 1969; 18(2):125-9. PubMed ID: 4243162
    [No Abstract]   [Full Text] [Related]  

  • 4. The influence of juvenile hormone on glycogen, fat and nitrogen metabolism in Galleria mellonella L.
    Janda V; Sehnal F
    Endocrinol Exp; 1971 Mar; 5(1):53-6. PubMed ID: 5317425
    [No Abstract]   [Full Text] [Related]  

  • 5. [Structure and functional characteristics of the head receptors controlling the work of the wing muscles of the dragonfly Aeschna grandis].
    Sveshnikov VG
    Zh Evol Biokhim Fiziol; 1972; 8(5):530-5. PubMed ID: 4668749
    [No Abstract]   [Full Text] [Related]  

  • 6. Oogenesis-flight syndrome in crickets: age-dependent egg production, flight performance, and biochemical composition of the flight muscles in adult female Gryllus bimaculatus.
    Lorenz MW
    J Insect Physiol; 2007 Aug; 53(8):819-32. PubMed ID: 17490675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifatigue properties of dragonfly Pantala flavescens wings.
    Li XJ; Zhang ZH; Liang YH; Ren LQ; Jie M; Yang ZG
    Microsc Res Tech; 2014 May; 77(5):356-62. PubMed ID: 24623401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flight fuel and neuropeptidergic control of fuel mobilisation in the twig wilter, Holopterna alata (Hemiptera, Coreidae).
    Gäde G; Auerswald L; Marco HG
    J Insect Physiol; 2006; 52(11-12):1171-81. PubMed ID: 17070834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A muscle mutant of Drosophila melanogaster: the electron microscopic study of the indirect flight musculature].
    Generalova MV; Kriukova ME
    Ontogenez; 1991; 22(6):591-9. PubMed ID: 1798635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy metabolism in orchid bee flight muscles: carbohydrate fuels all.
    Suarez RK; Darveau CA; Welch KC; O'Brien DM; Roubik DW; Hochachka PW
    J Exp Biol; 2005 Sep; 208(Pt 18):3573-9. PubMed ID: 16155228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: evidence for natural doping.
    Maillet D; Weber JM
    J Exp Biol; 2007 Feb; 210(Pt 3):413-20. PubMed ID: 17234610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mitochondria in respiratory metabolism of flight muscle.
    SACKTOR B
    Annu Rev Entomol; 1961; 6():103-30. PubMed ID: 13745258
    [No Abstract]   [Full Text] [Related]  

  • 14. Muscle metabolism.
    Drummond GI
    Fortschr Zool; 1967; 18(3):359-429. PubMed ID: 4875171
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of prolactin on the tissue glycogen, & lipid, content in the catfish Heteropneustes fossilis (Bloch).
    Singh AK
    Indian J Exp Biol; 1981 May; 19(5):425-7. PubMed ID: 7275205
    [No Abstract]   [Full Text] [Related]  

  • 16. Muscle biochemistry and the ontogeny of flight capacity during behavioral development in the honey bee, Apis mellifera.
    Roberts SP; Elekonich MM
    J Exp Biol; 2005 Nov; 208(Pt 22):4193-8. PubMed ID: 16272241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuel mobilization for energy metabolism in the silkmoth, Bombyx mori, during reproductive processes.
    Udapudi KT; Yadwad VB; Jadhav G; Kallapur VL
    Indian J Exp Biol; 1989 Aug; 27(8):732-4. PubMed ID: 2633983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of flight on the phospholipid metabolism in insect flight muscle.
    Strunecká A; Sula J; Mysková H; Kubista V
    Physiol Bohemoslov; 1981; 30(5):411-6. PubMed ID: 6459590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Structural-functional peculiarities of wing appatatus of insects that have and do not have maneuver flight].
    Sviderskiĭ VL; Plotnikova SI; Gorelkin VS
    Zh Evol Biokhim Fiziol; 2008; 44(6):545-55. PubMed ID: 19198154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrying large fuel loads during sustained bird flight is cheaper than expected.
    Kvist A; Lindström A ; Green M; Piersma T; Visser GH
    Nature; 2001 Oct; 413(6857):730-2. PubMed ID: 11607031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.