These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11937366)

  • 21. Influence of lobeline on catecholamine release from the isolated perfused rat adrenal gland.
    Lim DY; Kim YS; Miwa S
    Auton Neurosci; 2004 Jan; 110(1):27-35. PubMed ID: 14766322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Density of apamin-sensitive Ca(2+)-dependent K+ channels in bovine chromaffin cells: relevance to secretion.
    Lara B; Zapater P; Montiel C; de la Fuente MT; Martínez-Sierra R; Ballesta JJ; Gandía L; García AG
    Biochem Pharmacol; 1995 May; 49(10):1459-68. PubMed ID: 7763289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of nicotinic acetylcholine receptors and calcium channels by clozapine in bovine adrenal chromaffin cells.
    Park T; Bae S; Choi S; Kang B; Kim K
    Biochem Pharmacol; 2001 Apr; 61(8):1011-9. PubMed ID: 11286992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of tacrine on insulin secretion and 86Rb+ and 45Ca++ efflux from rat pancreatic islets.
    Karlsson S; Ahrén B
    J Pharmacol Exp Ther; 1992 Nov; 263(2):494-8. PubMed ID: 1331400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of anabasine on catecholamine secretion from the perfused rat adrenal medulla.
    Hong SP; Jeong MG; Lim DY
    J Cardiol; 2007 Dec; 50(6):351-62. PubMed ID: 18186309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
    Dzhura EV; He W; Currie KP
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1165-74. PubMed ID: 16280412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PACAP activates calcium influx-dependent and -independent pathways to couple met-enkephalin secretion and biosynthesis in chromaffin cells.
    Hahm SH; Hsu CM; Eiden LE
    J Mol Neurosci; 1998 Aug; 11(1):43-56. PubMed ID: 9826785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actions of bis(7)-tacrine and tacrine on transient potassium current in rat DRG neurons and potassium current mediated by K(V)4.2 expressed in Xenopus oocyte.
    Li XY; Zhang J; Dai JP; Liu XM; Li ZW
    Brain Res; 2010 Mar; 1318():23-32. PubMed ID: 20043893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of vascular relaxation by thaligrisine: functional and binding assays.
    Tur R; Magraner J; Catret M; Elorriaga M; Ivorra MD; D'Ocon P; Bermejo A; Cabedo N; Cortes D; Anselmi E
    Life Sci; 2000 Aug; 67(13):1535-48. PubMed ID: 10983849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of FK506 and cyclosporin A on catecholamine release from bovine adrenal chromaffin cells.
    Matsumura C; Kuwashima H; Kimura T
    Auton Autacoid Pharmacol; 2004 Jul; 24(3):55-61. PubMed ID: 15541012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progesterone regulation of catecholamine secretion from chromaffin cells.
    Armstrong SM; Stuenkel EL
    Brain Res; 2005 May; 1043(1-2):76-86. PubMed ID: 15862520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blockade by NNC 55-0396, mibefradil, and nickel of calcium and exocytotic signals in chromaffin cells: implications for the regulation of hypoxia-induced secretion at early life.
    Fernández-Morales JC; Fernando Padín J; Vestring S; Musial DC; de Diego AM; García AG
    Eur J Pharmacol; 2015 Mar; 751():1-12. PubMed ID: 25622555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of tacrine on intracellular calcium in cholinergic SN56 neuronal cells.
    Dolezal V; Lisá V; Tucek S
    Brain Res; 1997 Sep; 769(2):219-24. PubMed ID: 9374189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blockade of nicotinic receptors of bovine adrenal chromaffin cells by nanomolar concentrations of atropine.
    González-Rubio JM; García de Diego AM; Egea J; Olivares R; Rojo J; Gandía L; García AG; Hernández-Guijo JM
    Eur J Pharmacol; 2006 Mar; 535(1-3):13-24. PubMed ID: 16530180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of secretion by mitochondria depends on the size of the local [Ca2+] after chromaffin cell stimulation.
    Montero M; Alonso MT; Albillos A; Cuchillo-Ibáñez I; Olivares R; G García A; García-Sancho J; Alvarez J
    Eur J Neurosci; 2001 Jun; 13(12):2247-54. PubMed ID: 11454028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells.
    Lara B; Gandía L; Martínez-Sierra R; Torres A; García AG
    Pflugers Arch; 1998 Mar; 435(4):472-8. PubMed ID: 9446693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigations of the dual contractile/relaxant properties showed by antioquine in rat aorta.
    Ivorra MD; Lugnier C; Catret M; Anselmi E; Cortes D; D'Ocon P
    Br J Pharmacol; 1993 Jun; 109(2):502-9. PubMed ID: 8358549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium-dependent inhibition by PN200-110 enantiomers of nicotinic adrenal catecholamine release.
    Cárdenas AM; Montiel C; Artalejo AR; Sánchez-García P; García AG
    Br J Pharmacol; 1988 Sep; 95(1):9-14. PubMed ID: 2975522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of NMDA-gated ion channels by bis(7)-tacrine: whole-cell and single-channel studies.
    Liu YW; Luo JL; Ren H; Peoples RW; Ai YX; Liu LJ; Pang YP; Li ZW; Han YF; Li CY
    Neuropharmacology; 2008 Jun; 54(7):1086-94. PubMed ID: 18407299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DMPP causes relaxation of rat distal colon by a purinergic and a nitrergic mechanism.
    Börjesson L; Nordgren S; Delbro DS
    Eur J Pharmacol; 1997 Sep; 334(2-3):223-31. PubMed ID: 9369352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.