BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11937490)

  • 1. The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling.
    Ring C; Ogata S; Meek L; Song J; Ohta T; Miyazono K; Cho KW
    Genes Dev; 2002 Apr; 16(7):820-35. PubMed ID: 11937490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive and negative regulation of the transforming growth factor beta/activin target gene goosecoid by the TFII-I family of transcription factors.
    Ku M; Sokol SY; Wu J; Tussie-Luna MI; Roy AL; Hata A
    Mol Cell Biol; 2005 Aug; 25(16):7144-57. PubMed ID: 16055724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif.
    Germain S; Howell M; Esslemont GM; Hill CS
    Genes Dev; 2000 Feb; 14(4):435-51. PubMed ID: 10691736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2.
    Labbé E; Silvestri C; Hoodless PA; Wrana JL; Attisano L
    Mol Cell; 1998 Jul; 2(1):109-20. PubMed ID: 9702197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the Lim-1 gene is mediated through conserved FAST-1/FoxH1 sites in the first intron.
    Watanabe M; Rebbert ML; Andreazzoli M; Takahashi N; Toyama R; Zimmerman S; Whitman M; Dawid IB
    Dev Dyn; 2002 Dec; 225(4):448-56. PubMed ID: 12454922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis.
    Yeo CY; Chen X; Whitman M
    J Biol Chem; 1999 Sep; 274(37):26584-90. PubMed ID: 10473623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling.
    Felici A; Wurthner JU; Parks WT; Giam LR; Reiss M; Karpova TS; McNally JG; Roberts AB
    EMBO J; 2003 Sep; 22(17):4465-77. PubMed ID: 12941698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways.
    Hata A; Seoane J; Lagna G; Montalvo E; Hemmati-Brivanlou A; Massagué J
    Cell; 2000 Jan; 100(2):229-40. PubMed ID: 10660046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of Smad2, Smad3, Smad4, and Smad7 from the goldfish pituitary and evidence for their involvement in activin regulation of goldfish FSHbeta promoter activity.
    Lau MT; Ge W
    Gen Comp Endocrinol; 2005 Mar; 141(1):22-38. PubMed ID: 15707600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oct25 represses transcription of nodal/activin target genes by interaction with signal transducers during Xenopus gastrulation.
    Cao Y; Siegel D; Oswald F; Knöchel W
    J Biol Chem; 2008 Dec; 283(49):34168-77. PubMed ID: 18922797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smad4 and FAST-1 in the assembly of activin-responsive factor.
    Chen X; Weisberg E; Fridmacher V; Watanabe M; Naco G; Whitman M
    Nature; 1997 Sep; 389(6646):85-9. PubMed ID: 9288972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the functional difference between Smad2 and Smad3 in FAST-2 (forkhead activin signal transducer-2)-mediated transcription.
    Nagarajan RP; Chen Y
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):253-9. PubMed ID: 10926851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A.
    Abe T; Furue M; Kondow A; Matsuzaki K; Asashima M
    Mech Dev; 2005 May; 122(5):671-80. PubMed ID: 15817224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor internalization-independent activation of Smad2 in activin signaling.
    Zhou Y; Scolavino S; Funderburk SF; Ficociello LF; Zhang X; Klibanski A
    Mol Endocrinol; 2004 Jul; 18(7):1818-26. PubMed ID: 15087470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of an SH3 domain-containing protein (Xchef-1), a novel downstream target of activin/nodal signaling.
    Meek LM; Hayata T; Shin YC; Evinger AJ; Cho KW
    Gene Expr Patterns; 2004 Oct; 4(6):719-24. PubMed ID: 15465495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals.
    Liu B; Dou CL; Prabhu L; Lai E
    Mol Cell Biol; 1999 Jan; 19(1):424-30. PubMed ID: 9858566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transcription factor involved in skeletal muscle gene expression is deleted in patients with Williams syndrome.
    Tassabehji M; Carette M; Wilmot C; Donnai D; Read AP; Metcalfe K
    Eur J Hum Genet; 1999; 7(7):737-47. PubMed ID: 10573005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development.
    Reid CD; Steiner AB; Yaklichkin S; Lu Q; Wang S; Hennessy M; Kessler DS
    Dev Biol; 2016 Jun; 414(1):34-44. PubMed ID: 27085753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activin A signaling directly activates Xenopus winged helix factors XFD-4/4', the orthologues to mammalian MFH-1.
    Köster M; Dillinger K; Knöchel W
    Dev Genes Evol; 2000 Jun; 210(6):320-4. PubMed ID: 11180837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel negative regulator of activin/nodal signaling in mesendodermal formation of Xenopus embryos.
    Cheong SM; Kim H; Han JK
    J Biol Chem; 2009 Jun; 284(25):17052-17060. PubMed ID: 19389709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.