These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11937632)

  • 1. Calculation of hydrodynamic properties of small nucleic acids from their atomic structure.
    Fernandes MX; Ortega A; López Martínez MC; García de la Torre J
    Nucleic Acids Res; 2002 Apr; 30(8):1782-8. PubMed ID: 11937632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of biopolymers: a new method of constructing a bead model.
    Banachowicz E; Gapiński J; Patkowski A
    Biophys J; 2000 Jan; 78(1):70-8. PubMed ID: 10620274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic properties of a double-helical model for DNA.
    Garcia de la Torre J; Navarro S; Lopez Martinez MC
    Biophys J; 1994 May; 66(5):1573-9. PubMed ID: 8061206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of DNA structure to internal dynamics: correlation of helical parameters from NOE-based NMR solution structures of d(GCGTACGC)(2) and d(CGCTAGCG)(2) with (13)C order parameters implies conformational coupling in dinucleotide units.
    Isaacs RJ; Spielmann HP
    J Mol Biol; 2001 Mar; 307(2):525-40. PubMed ID: 11254380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure.
    García De La Torre J; Huertas ML; Carrasco B
    Biophys J; 2000 Feb; 78(2):719-30. PubMed ID: 10653785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins.
    García de la Torre J
    Biophys Chem; 2001 Nov; 93(2-3):159-70. PubMed ID: 11804723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C-NMR relaxation in three DNA oligonucleotide duplexes: model-free analysis of internal and overall motion.
    Borer PN; LaPlante SR; Kumar A; Zanatta N; Martin A; Hakkinen A; Levy GC
    Biochemistry; 1994 Mar; 33(9):2441-50. PubMed ID: 8117704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the overall and internal dynamics of short oligonucleotides by depolarized dynamic light scattering and NMR relaxation measurements.
    Eimer W; Williamson JR; Boxer SG; Pecora R
    Biochemistry; 1990 Jan; 29(3):799-811. PubMed ID: 2337597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry of nucleotides and oligonucleotides.
    McClure TD; Schram KH
    Methods Mol Biol; 1994; 26():319-45. PubMed ID: 8313009
    [No Abstract]   [Full Text] [Related]  

  • 10. A unified picture of protein hydration: prediction of hydrodynamic properties from known structures.
    Zhou HX
    Biophys Chem; 2001 Nov; 93(2-3):171-9. PubMed ID: 11804724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invasion of strongly binding oligonucleotides into tRNA structure.
    Petyuk V; Serikov R; Tolstikov V; Potapov V; Giege R; Zenkova M; Vlassov V
    Nucleosides Nucleotides Nucleic Acids; 2000 Jul; 19(7):1145-58. PubMed ID: 10999254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical description of biomolecular hydration. Application to A-DNA.
    Garcia AE; Hummer G; Soumpasis DM
    Basic Life Sci; 1996; 64():299-308. PubMed ID: 9031515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR.
    Halle B; Denisov VP
    Biopolymers; 1998; 48(4):210-33. PubMed ID: 10699841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the electrophoretic and hydrodynamic properties of DNA and RNA oligonucleotide duplexes.
    Bonifacio GF; Brown T; Conn GL; Lane AN
    Biophys J; 1997 Sep; 73(3):1532-8. PubMed ID: 9284320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR observation of individual molecules of hydration water bound to DNA duplexes: direct evidence for a spine of hydration water present in aqueous solution.
    Liepinsh E; Otting G; Wüthrich K
    Nucleic Acids Res; 1992 Dec; 20(24):6549-53. PubMed ID: 1480475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the residence time of water molecules hydrating B'- DNA and B-DNA, by one-dimensional zero-enhancement nuclear Overhauser effect spectroscopy.
    Phan AT; Leroy JL; Guéron M
    J Mol Biol; 1999 Feb; 286(2):505-19. PubMed ID: 9973567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrostatic and osmotic pressure study of the RNA hydration.
    Giel-Pietraszuk M; Barciszewski J
    Mol Biol Rep; 2012 May; 39(5):6309-18. PubMed ID: 22314910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient, accurate calculation of rotational diffusion and NMR relaxation of globular proteins from atomic-level structures and approximate hydrodynamic calculations.
    Ortega A; García de la Torre J
    J Am Chem Soc; 2005 Sep; 127(37):12764-5. PubMed ID: 16159246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.