BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 11938654)

  • 1. [Spectral characteristics of electrical activity of the respiratory center in brain processes in fetus and newborn rats in vitro].
    Miroshnichenko IV; Piatin VF; Alekseeva AS; Tiurin NL
    Ross Fiziol Zh Im I M Sechenova; 2002 Feb; 88(2):248-56. PubMed ID: 11938654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.
    Solomon IC; Chon KH; Rodriguez MN
    J Neurophysiol; 2003 Jan; 89(1):135-49. PubMed ID: 12522166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro study of central respiratory-like activity of the fetal rat.
    Di Pasquale E; Monteau R; Hilaire G
    Exp Brain Res; 1992; 89(2):459-64. PubMed ID: 1623989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nitric oxide is involved in the modulation of central respiratory rhythm].
    Li ZQ; Wu ZH; Shi Y; Wang NQ
    Sheng Li Xue Bao; 2003 Oct; 55(5):560-4. PubMed ID: 14566404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biphasic effects of substance P on respiratory activity and respiration-related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro.
    Shvarev YN; Lagercrantz H; Yamamoto Y
    Acta Physiol Scand; 2002 Jan; 174(1):67-84. PubMed ID: 11851598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of riluzole on respiratory rhythm generation in the brainstem-spinal cord preparation from newborn rat.
    Lin ST; Onimaru H
    Neurosci Res; 2015 May; 94():28-36. PubMed ID: 25498952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of respiration in the isolated central nervous system of the neonatal opossum, Monodelphis domestica.
    Eugenín J; Nicholls JG
    Brain Res Bull; 2000 Nov; 53(5):605-13. PubMed ID: 11165796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nitric oxide on respiratory activity in bulbospinal preparation from rat fetus.
    Pyatin VF; Miroshnichenko IV
    Bull Exp Biol Med; 2001 Aug; 132(2):723-6. PubMed ID: 11713548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ouabain on respiratory rhythm generation in brainstem-spinal cord preparation from newborn rats and in decerebrate and arterially perfused in situ preparation from juvenile rats.
    Tsuzawa K; Yazawa I; Shakuo T; Ikeda K; Kawakami K; Onimaru H
    Neuroscience; 2015 Feb; 286():404-11. PubMed ID: 25512246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro.
    Eugenín J; von Bernhardi R; Muller KJ; Llona I
    Neuroscience; 2006 Aug; 141(1):223-31. PubMed ID: 16675136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory neuron group in the high cervical spinal cord discovered by optical imaging.
    Oku Y; Okabe A; Hayakawa T; Okada Y
    Neuroreport; 2008 Nov; 19(17):1739-43. PubMed ID: 18841086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perinatal maturation of the respiratory rhythm generator in mammals: from experimental results to computational simulation.
    Achard P; Zanella S; Rodriguez R; Hilaire G
    Respir Physiol Neurobiol; 2005 Nov; 149(1-3):17-27. PubMed ID: 16203211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Lidocaine on Central Respiratory Neuron Activity and Nociceptive-Related Responses in the Brainstem-Spinal Cord Preparation of the Newborn Rat.
    Shakuo T; Lin ST; Onimaru H
    Anesth Analg; 2016 May; 122(5):1586-93. PubMed ID: 26962714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maturation of brain stem neurons involved in respiratory rhythmogenesis: biochemical, bioelectrical and morphological properties.
    Denavit-Saubié M; Kalia M; Pierrefiche O; Schweitzer P; Foutz AS; Champagnat J
    Biol Neonate; 1994; 65(3-4):171-5. PubMed ID: 8038279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of respiratory function in perinatal ontogenesis].
    Bursian AV
    Zh Evol Biokhim Fiziol; 2007; 43(1):24-31. PubMed ID: 17408089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early postnatal changes in respiratory activity in rat in vitro and modulatory effects of substance P.
    Shvarev YN; Lagercrantz H
    Eur J Neurosci; 2006 Oct; 24(8):2253-63. PubMed ID: 17042798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat.
    Onimaru H; Shamoto A; Homma I
    Pflugers Arch; 1998 Mar; 435(4):485-94. PubMed ID: 9446695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective interaction between dual oscillators for respiratory rhythm generation in Na+,K+-ATPase {alpha}2 subunit-deficient mice.
    Onimaru H; Ikeda K; Kawakami K
    J Physiol; 2007 Oct; 584(Pt 1):271-84. PubMed ID: 17690149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous respiratory rhythm generation in in vitro upper cervical slice preparations of neonatal mice.
    Kobayashi S; Fujito Y; Matsuyama K; Aoki M
    J Physiol Sci; 2010 Jul; 60(4):303-7. PubMed ID: 20419361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.