BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11939529)

  • 1. Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy.
    Kamnev AA; Antonyuk LP; Smirnova VE; Serebrennikova OB; Kulikov LA; Perfiliev YD
    Anal Bioanal Chem; 2002 Feb; 372(3):431-5. PubMed ID: 11939529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy.
    Kamnev AA; Antonyuk LP; Kulikov LA; Perfiliev YD
    Biometals; 2004 Aug; 17(4):457-66. PubMed ID: 15259367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of glutamine synthetase from Azospirillum brasilense.
    Kamnev AA; Antonyuk LP; Smirnova VE; Kulikov LA; Perfiliev YD; Kudelina IA; Kuzmann E; Vértes A
    Biopolymers; 2004 May-Jun 5; 74(1-2):64-8. PubMed ID: 15137096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of emission Mössbauer spectroscopy to the study of cobalt coordination in the active centers of bacterial glutamine synthetase.
    Kamnev AA; Antonyuk LP; Smirnova VE; Kulikov LA; Perfiliev YD; Kuzmann E; Vértes A
    Dokl Biochem Biophys; 2003; 393():321-5. PubMed ID: 14870610
    [No Abstract]   [Full Text] [Related]  

  • 5. [Glutamine synthetase of the rhizobacterium Azospirillum brasilense: specific features of catalysis and regulation].
    Antoniuk LP
    Prikl Biokhim Mikrobiol; 2007; 43(3):272-8. PubMed ID: 17619573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emission ((57)Co) Mössbauer spectroscopy as a tool for probing speciation and metabolic transformations of cobalt(II) in bacterial cells.
    Kamnev AA; Tugarova AV; Kovács K; Kuzmann E; Biró B; Tarantilis PA; Homonnay Z
    Anal Bioanal Chem; 2013 Feb; 405(6):1921-7. PubMed ID: 22960797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of divalent cations on the catalytic properties and secondary structure of unadenylylated glutamine synthetase from Azospirillum brasilense.
    Antonyuk LP; Smirnova VE; Kamnev AA; Serebrennikova OB; Vanoni MA; Zanetti G; Kudelina IA; Sokolov OI; Ignatov VV
    Biometals; 2001 Mar; 14(1):13-22. PubMed ID: 11368271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for ferritin as dominant iron-bearing species in the rhizobacterium Azospirillum brasilense Sp7 provided by low-temperature/in-field Mössbauer spectroscopy.
    Kovács K; Kamnev AA; Pechoušek J; Tugarova AV; Kuzmann E; Machala L; Zbořil R; Homonnay Z; Lázár K
    Anal Bioanal Chem; 2016 Feb; 408(6):1565-71. PubMed ID: 26769130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt(II) complexation with small biomolecules as studied by
    Kamnev AA; Perfiliev YD; Kulikov LA; Tugarova AV; Kovács K; Homonnay Z; Kuzmann E
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 172():77-82. PubMed ID: 27130827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques.
    Kamnev AA; Tugarova AV; Antonyuk LP; Tarantilis PA; Kulikov LA; Perfiliev YD; Polissiou MG; Gardiner PH
    Anal Chim Acta; 2006 Jul; 573-574():445-52. PubMed ID: 17723559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense].
    Kushneruk MA; Tugarova AV; Il'chukova AV; Slavkina EA; Starichkova NI; Bogatyrev VA; Antoniuk LP
    Mikrobiologiia; 2013; 82(5):563-70. PubMed ID: 25509394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic changes resulting from distinct point mutations in the Azospirillum brasilense glnA gene, encoding glutamine synthetase.
    Van Dommelen A; Keijers V; Wollebrants A; Vanderleyden J
    Appl Environ Microbiol; 2003 Sep; 69(9):5699-701. PubMed ID: 12957965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.
    Van Dommelen A; Spaepen S; Vanderleyden J
    Res Microbiol; 2009 Apr; 160(3):205-12. PubMed ID: 19366628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffuse reflectance infrared Fourier transform (DRIFT) and Mössbauer spectroscopic study of Azospirillum brasilense Sp7: Evidence for intracellular iron(II) oxidation in bacterial biomass upon lyophilisation.
    Kamnev AA; Tugarova AV; Shchelochkov AG; Kovács K; Kuzmann E
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117970. PubMed ID: 31887674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.
    Meza B; de-Bashan LE; Bashan Y
    Res Microbiol; 2015; 166(2):72-83. PubMed ID: 25554489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245.
    Pothier JF; Prigent-Combaret C; Haurat J; Moënne-Loccoz Y; Wisniewski-Dyé F
    Mol Plant Microbe Interact; 2008 Jun; 21(6):831-42. PubMed ID: 18624646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expressed sequence tags related to nitrogen metabolism in maize inoculated with Azospirillum brasilense.
    Pereira-Defilippi L; Pereira EM; Silva FM; Moro GV
    Genet Mol Res; 2017 May; 16(2):. PubMed ID: 28613381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG.
    Huergo LF; Souza EM; Araujo MS; Pedrosa FO; Chubatsu LS; Steffens MB; Merrick M
    Mol Microbiol; 2006 Jan; 59(1):326-37. PubMed ID: 16359338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.
    Fibach-Paldi S; Burdman S; Okon Y
    FEMS Microbiol Lett; 2012 Jan; 326(2):99-108. PubMed ID: 22092983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.