BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 11939802)

  • 1. Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding.
    Martin J
    Biochemistry; 2002 Apr; 41(15):5050-5. PubMed ID: 11939802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle.
    Miyazaki T; Yoshimi T; Furutsu Y; Hongo K; Mizobata T; Kanemori M; Kawata Y
    J Biol Chem; 2002 Dec; 277(52):50621-8. PubMed ID: 12377767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of macromolecular crowding on chaperonin-mediated protein folding.
    Martin J; Hartl FU
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1107-12. PubMed ID: 9037014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding.
    Motojima F; Makio T; Aoki K; Makino Y; Kuwajima K; Yoshida M
    Biochem Biophys Res Commun; 2000 Jan; 267(3):842-9. PubMed ID: 10673379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
    Motojima F; Yoshida M
    Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triggering protein folding within the GroEL-GroES complex.
    Madan D; Lin Z; Rye HS
    J Biol Chem; 2008 Nov; 283(46):32003-13. PubMed ID: 18782766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
    Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB
    EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding.
    Hayer-Hartl MK; Martin J; Hartl FU
    Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP.
    Motojima F; Yoshida M
    J Biol Chem; 2003 Jul; 278(29):26648-54. PubMed ID: 12736270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution.
    Horst R; Fenton WA; Englander SW; Wüthrich K; Horwich AL
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20788-92. PubMed ID: 18093916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions of forming protein complexes with GroEL can influence the mechanism of chaperonin-assisted refolding.
    Gorovits BM; Horowitz PM
    J Biol Chem; 1997 Jan; 272(1):32-5. PubMed ID: 8995221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
    Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M
    J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding.
    Llorca O; Carrascosa JL; Valpuesta JM
    J Biol Chem; 1996 Jan; 271(1):68-76. PubMed ID: 8550627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
    Betancourt MR; Thirumalai D
    J Mol Biol; 1999 Apr; 287(3):627-44. PubMed ID: 10092464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL.
    Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL
    Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro.
    Huang YS; Chuang DT
    J Biol Chem; 1999 Apr; 274(15):10405-12. PubMed ID: 10187830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.