BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11940587)

  • 1. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae.
    Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T
    J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements.
    Hashikawa N; Yamamoto N; Sakurai H
    J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions.
    Fernandes M; Xiao H; Lis JT
    Nucleic Acids Res; 1994 Jan; 22(2):167-73. PubMed ID: 8121800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids.
    Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K
    Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock transcriptional factor mediates mitochondrial unfolded protein response.
    Koike N; Hatano Y; Ushimaru T
    Curr Genet; 2018 Aug; 64(4):907-917. PubMed ID: 29423676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between DNA-bound trimers of the yeast heat shock factor.
    Bonner JJ; Ballou C; Fackenthal DL
    Mol Cell Biol; 1994 Jan; 14(1):501-8. PubMed ID: 8264619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells.
    Roccisana JL; Kawanabe N; Kajiya H; Koide M; Roodman GD; Reddy SV
    J Biol Chem; 2004 Mar; 279(11):10500-7. PubMed ID: 14699143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance.
    Sewell AK; Yokoya F; Yu W; Miyagawa T; Murayama T; Winge DR
    J Biol Chem; 1995 Oct; 270(42):25079-86. PubMed ID: 7559639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors.
    Seymour IJ; Piper PW
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase.
    Hahn JS; Thiele DJ
    J Biol Chem; 2004 Feb; 279(7):5169-76. PubMed ID: 14612437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.