BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11940587)

  • 41. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide analysis of the biology of stress responses through heat shock transcription factor.
    Hahn JS; Hu Z; Thiele DJ; Iyer VR
    Mol Cell Biol; 2004 Jun; 24(12):5249-56. PubMed ID: 15169889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro.
    Amin J; Fernandez M; Ananthan J; Lis JT; Voellmy R
    J Biol Chem; 1994 Feb; 269(7):4804-11. PubMed ID: 8106450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of chaperone gene expression by heat shock transcription factor in Saccharomyces cerevisiae: importance in normal cell growth, stress resistance, and longevity.
    Sakurai H; Ota A
    FEBS Lett; 2011 Sep; 585(17):2744-8. PubMed ID: 21827755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of heat stress on yeast heat shock factor-promoter binding in vivo.
    Li N; Zhang LM; Zhang KQ; Deng JS; Prändl R; Schöffl F
    Acta Biochim Biophys Sin (Shanghai); 2006 May; 38(5):356-62. PubMed ID: 16680377
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82.
    Szent-Gyorgyi C
    Mol Cell Biol; 1995 Dec; 15(12):6754-69. PubMed ID: 8524241
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding.
    Ota A; Enoki Y; Yamamoto N; Sawai M; Sakurai H
    Biochim Biophys Acta; 2013 Sep; 1829(9):930-6. PubMed ID: 23567048
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell cycle-dependent binding of yeast heat shock factor to nucleosomes.
    Venturi CB; Erkine AM; Gross DS
    Mol Cell Biol; 2000 Sep; 20(17):6435-48. PubMed ID: 10938121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains.
    Bulman AL; Hubl ST; Nelson HC
    J Biol Chem; 2001 Oct; 276(43):40254-62. PubMed ID: 11509572
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sea urchin HSF activity in vitro and in transgenic embryos.
    Sconzo G; Geraci F; Melfi R; Cascino D; Spinelli G; Giudice G; Sirchia R
    Biochem Biophys Res Commun; 1997 Nov; 240(2):436-41. PubMed ID: 9388497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complex modes of heat shock factor activation.
    Zimarino V; Tsai C; Wu C
    Mol Cell Biol; 1990 Feb; 10(2):752-9. PubMed ID: 2405254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene expression of 70 kDa heat shock protein of Candida albicans: transcriptional activation and response to heat shock.
    Sandini S; Melchionna R; Bromuro C; La Valle R
    Med Mycol; 2002 Oct; 40(5):471-8. PubMed ID: 12462526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor.
    Jakobsen BK; Pelham HR
    EMBO J; 1991 Feb; 10(2):369-75. PubMed ID: 1899375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutational analysis of human heat-shock transcription factor 1 reveals a regulatory role for oligomerization in DNA-binding specificity.
    Takemori Y; Enoki Y; Yamamoto N; Fukai Y; Adachi K; Sakurai H
    Biochem J; 2009 Nov; 424(2):253-61. PubMed ID: 19758120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae.
    Mori K; Ogawa N; Kawahara T; Yanagi H; Yura T
    J Biol Chem; 1998 Apr; 273(16):9912-20. PubMed ID: 9545334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.