BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 11940617)

  • 61. In vitro interface and cement mantle analysis of different femur stem designs.
    Gravius S; Wirtz DC; Siebert CH; Andereya S; Mueller-Rath R; Maus U; Mumme T
    J Biomech; 2008; 41(9):2021-8. PubMed ID: 18514207
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model.
    Mann KA; Bartel DL; Wright TM; Burstein AH
    J Biomech; 1995 Sep; 28(9):1067-78. PubMed ID: 7559676
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Three-dimensional finite element analysis responsible to bone cement with customized prosthesis of proximal segmental femur].
    Liu Y; Tu CQ; Li XB; Duan H; Pei FX
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Mar; 38(2):324-7. PubMed ID: 17441361
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Anatomically adapted endoprosthesis of the proximal end of the femur].
    Henssge EJ; Grundei H; Etspüler R; Köller W; Fink K
    Z Orthop Ihre Grenzgeb; 1985; 123(5):821-8. PubMed ID: 4082741
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cement mantle stress under retroversion torque at heel-strike.
    Afsharpoya B; Barton DC; Fisher J; Purbach B; Wroblewski M; Stewart TD
    Med Eng Phys; 2009 Dec; 31(10):1323-30. PubMed ID: 19879794
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The influence of surface roughness on stem-cement gaps.
    Race A; Miller MA; Ayers DC; Cleary RJ; Mann KA
    J Bone Joint Surg Br; 2002 Nov; 84(8):1199-204. PubMed ID: 12463671
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA).
    Norman TL; Shultz T; Noble G; Gruen TA; Blaha JD
    J Biomech; 2013 Mar; 46(5):949-55. PubMed ID: 23357700
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Application of circular statistics in the study of crack distribution around cemented femoral components.
    Mann KA; Gupta S; Race A; Miller MA; Cleary RJ
    J Biomech; 2003 Aug; 36(8):1231-4. PubMed ID: 12831752
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling.
    Maloney WJ; Jasty M; Burke DW; O'Connor DO; Zalenski EB; Bragdon C; Harris WH
    Clin Orthop Relat Res; 1989 Dec; (249):129-40. PubMed ID: 2582664
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polished vs rough femoral components in grade A and grade C-2 cement mantles.
    Duffy GP; Lozynsky AJ; Harris WH
    J Arthroplasty; 2006 Oct; 21(7):1054-63. PubMed ID: 17027551
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components.
    Oh I; Harris WH
    J Bone Joint Surg Am; 1978 Jan; 60(1):75-85. PubMed ID: 624762
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of the change in stem length on the load transfer and bone remodelling for a cemented resurfaced femur.
    Pal B; Gupta S; New AM
    J Biomech; 2010 Nov; 43(15):2908-14. PubMed ID: 20728891
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Primary Stability of Collared and Collarless Cementless Femoral Stems - A Finite Element Analysis Study.
    Watanabe R; Mishima H; Totsuka S; Nishino T; Yamazaki M
    Arthroplast Today; 2023 Jun; 21():101140. PubMed ID: 37151402
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An investigation into the fixation of hip replacements.
    Humphreys PK; Orr JF; Bahrani AS
    Proc Inst Mech Eng H; 1991; 205(3):145-53. PubMed ID: 1823788
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Anatomic basis of the cemented femur shaft. A comparative study of straight and anatomic design].
    Breusch SJ; Draenert Y; Draenert K
    Z Orthop Ihre Grenzgeb; 1998; 136(6):554-9. PubMed ID: 10036745
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The importance of a thick cement mantle depends on stem geometry and stem-cement interfacial bonding.
    Caruana J; Janssen D; Verdonschot N; Blunn GW
    Proc Inst Mech Eng H; 2009 Apr; 223(3):315-27. PubMed ID: 19405437
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Shape optimisation of a Charnley prosthesis based on the fatigue notch factor.
    Hedia HS; Barton DC; Fisher J; Ibrahim A
    Biomed Mater Eng; 1996; 6(3):199-217. PubMed ID: 8922265
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The initiation of failure in cemented femoral components of hip arthroplasties.
    Jasty M; Maloney WJ; Bragdon CR; O'Connor DO; Haire T; Harris WH
    J Bone Joint Surg Br; 1991 Jul; 73(4):551-8. PubMed ID: 2071634
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of Femoral Head Size, Subject Weight, and Activity Level on Acetabular Cement Mantle Stress Following Total Hip Arthroplasty.
    Del-Valle-Mojica JF; Alonso-Rasgado T; Jimenez-Cruz D; Bailey CG; Board TN
    J Orthop Res; 2019 Aug; 37(8):1771-1783. PubMed ID: 30977550
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Proximal cementation of a collarless polished tapered hip stem: biomechanical analysis using a validated finite element model.
    Ling CSY; Izmin A; Todo M; Merican AM; Chong DYR
    Med Biol Eng Comput; 2024 Jun; ():. PubMed ID: 38898201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.