These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 1194135)

  • 1. Decarboxylation of substituted cinnamic acids by enterobacteria: the influence on beer flavour.
    Lindsay RF; Priest FG
    J Appl Bacteriol; 1975 Oct; 39(2):181-7. PubMed ID: 1194135
    [No Abstract]   [Full Text] [Related]  

  • 2. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae.
    Mukai N; Masaki K; Fujii T; Kawamukai M; Iefuji H
    J Biosci Bioeng; 2010 Jun; 109(6):564-9. PubMed ID: 20471595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains.
    Sharma UK; Sharma N; Salwan R; Kumar R; Kasana RC; Sinha AK
    J Sci Food Agric; 2012 Feb; 92(3):610-7. PubMed ID: 21919002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.
    Langos D; Granvogl M
    J Agric Food Chem; 2016 Mar; 64(11):2325-32. PubMed ID: 26800353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions.
    Grbić-Galić D
    J Appl Bacteriol; 1986 Dec; 61(6):491-7. PubMed ID: 3549663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme reactions with phenolic compounds: formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids by Aerobacter.
    FINKLE BJ; LEWIS JC; CORSE JW; LUNDIN RE
    J Biol Chem; 1962 Sep; 237():2926-31. PubMed ID: 13893003
    [No Abstract]   [Full Text] [Related]  

  • 7. Bioconversion of cinnamic acid derivatives by Schizophyllum commune.
    Nimura Y; Tsujiyama S; Ueno M
    J Gen Appl Microbiol; 2010 Oct; 56(5):381-7. PubMed ID: 21099134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decarboxylative conversion of hydroxycinnamic acids to hydroxystyrenes by Polyporus circinata.
    Bayne HG; Finkle BJ; Lundin RE
    J Gen Microbiol; 1976 Jul; 95(1):188-90. PubMed ID: 956775
    [No Abstract]   [Full Text] [Related]  

  • 9. Delineating compartmentalized control of phenylpropanoid metabolism.
    Colquhoun TA
    J Chem Ecol; 2012 Mar; 38(3):230. PubMed ID: 22415554
    [No Abstract]   [Full Text] [Related]  

  • 10. Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection.
    Vanbeneden N; Delvaux F; Delvaux FR
    J Chromatogr A; 2006 Dec; 1136(2):237-42. PubMed ID: 17109870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of styrenes through the biocatalytic decarboxylation of trans-cinnamic acids by plant cell cultures.
    Takemoto M; Achiwa K
    Chem Pharm Bull (Tokyo); 2001 May; 49(5):639-41. PubMed ID: 11383623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic hydroxylation of m-coumaric acid by mice liver hydroxylase.
    Bajaj KL; Singh J; Chakravarti P
    Indian J Exp Biol; 1977 May; 15(5):381-3. PubMed ID: 924532
    [No Abstract]   [Full Text] [Related]  

  • 13. The action of hydrogen peroxide on the hydroxylation of p-coumaric acid by spinach-beet phenolase.
    Vaughan PF; McIntyre RJ
    Biochem J; 1975 Dec; 151(3):759-62. PubMed ID: 814897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylpropanoid constituents of essential oils.
    Friedrich H
    Lloydia; 1976; 39(1):1-7. PubMed ID: 775232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of p-coumaric acid to caffeic acid and of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid by Alnus rubra.
    Li CY
    Lloydia; 1977; 40(3):298-30. PubMed ID: 895387
    [No Abstract]   [Full Text] [Related]  

  • 16. Stereochemistry of decarboxylation of trans-4-hydroxycinnamic acid by Aerobacter.
    Parry RJ
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1681-83. PubMed ID: 1057163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decarboxylation of 4-hydroxycinnamic acids by Bacillus strains isolated from rat intestine.
    Indahl SR; Scheline RR
    Appl Microbiol; 1968 Apr; 16(4):667. PubMed ID: 5647528
    [No Abstract]   [Full Text] [Related]  

  • 18. Differences between coumaric and cinnamic acids in membrane permeation as evidenced by time-dependent calorimetry.
    Castelli F; Uccella N; Trombetta D; Saija A
    J Agric Food Chem; 1999 Mar; 47(3):991-5. PubMed ID: 10552403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies on the hydroxylation of p-coumaric acid to caffeic acid by spinach-beet phenolase.
    McIntyre RJ; Vaughan PF
    Biochem J; 1975 Aug; 149(2):447-61. PubMed ID: 170916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of indulin, a kraft pine lignin, by Serratia marcescens.
    Manangeeswaran M; Ramalingam VV; Kumar K; Mohan N
    J Environ Sci Health B; 2007; 42(3):321-7. PubMed ID: 17454386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.