These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 11941397)

  • 1. [Spatial frequency tuning characteristics of cat primary visual cortex at different topological locations by optical imaging].
    Yu HB; Shou TD
    Sheng Li Xue Bao; 2000 Oct; 52(5):411-5. PubMed ID: 11941397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex.
    Shoham D; Hübener M; Schulze S; Grinvald A; Bonhoeffer T
    Nature; 1997 Feb; 385(6616):529-33. PubMed ID: 9020358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical maps of separable tuning properties predict population responses to complex visual stimuli.
    Baker TI; Issa NP
    J Neurophysiol; 2005 Jul; 94(1):775-87. PubMed ID: 15758052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular organization in area 21a of the cat revealed by optical imaging: comparison with the primary visual cortex.
    Villeneuve MY; Vanni MP; Casanova C
    Neuroscience; 2009 Dec; 164(3):1320-33. PubMed ID: 19712725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial frequency-specific contrast adaptation originates in the primary visual cortex.
    Duong T; Freeman RD
    J Neurophysiol; 2007 Jul; 98(1):187-95. PubMed ID: 17428911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Inhibition and space-frequency characteristics of the complex receptive fields of the cat visual cortex].
    Gauzel'man VE; Glezer VD; Shcherbach TA; Virsu V
    Fiziol Zh SSSR Im I M Sechenova; 1979 Feb; 65(2):238-48. PubMed ID: 456643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Correlation of topographic and spatial-frequency characteristics of the lateral suprasylvian region and the striate cortex in the cat].
    Shelepin IuE
    Neirofiziologiia; 1984; 16(1):35-41. PubMed ID: 6717677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of inhibition in orientation and spatial frequency selectivity of cat visual cortex.
    Ramoa AS; Shadlen M; Skottun BC; Freeman RD
    Nature; 1986 May 15-21; 321(6067):237-9. PubMed ID: 3713805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinotopic effects during spatial audio-visual integration.
    Meienbrock A; Naumer MJ; Doehrmann O; Singer W; Muckli L
    Neuropsychologia; 2007 Feb; 45(3):531-9. PubMed ID: 16797610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Receptive fields of the visual cortex--detectors or filters of spatial frequencies?].
    Glezer VD; Shcherbach TA; Gauzel'man VE
    Neirofiziologiia; 1979; 11(5):403-11. PubMed ID: 514404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in spatial and temporal frequency interactions between central and peripheral parts of the feline area 18.
    Zhao C; Hata R; Okamura JY; Wang G
    Eur J Neurosci; 2016 Oct; 44(8):2635-2645. PubMed ID: 27529598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrophysiological study on the interaction between emotional content and spatial frequency of visual stimuli.
    Carretié L; Hinojosa JA; López-Martín S; Tapia M
    Neuropsychologia; 2007 Mar; 45(6):1187-95. PubMed ID: 17118408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial frequency characteristics of nearby neurons in cats' visual cortex.
    Molotchnikoff S; Gillet PC; Shumikhina S; Bouchard M
    Neurosci Lett; 2007 May; 418(3):242-7. PubMed ID: 17400381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat.
    Tardif E; Bergeron A; Lepore F; Guillemot JP
    Brain Res; 1996 Apr; 716(1-2):219-23. PubMed ID: 8738243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repetitive adaptation induces plasticity of spatial frequency tuning in cat primary visual cortex.
    Marshansky S; Shumikhina S; Molotchnikoff S
    Neuroscience; 2011 Jan; 172():355-65. PubMed ID: 20969932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing deficits in primary visual cortex of amblyopic cats.
    Schmidt KE; Singer W; Galuske RA
    J Neurophysiol; 2004 Apr; 91(4):1661-71. PubMed ID: 14668297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical spatial frequencies for illusory contour processing in early visual cortex.
    Zhan CA; Baker CL
    Cereb Cortex; 2008 May; 18(5):1029-41. PubMed ID: 17693395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention.
    Womelsdorf T; Anton-Erxleben K; Pieper F; Treue S
    Nat Neurosci; 2006 Sep; 9(9):1156-60. PubMed ID: 16906153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus).
    Lui LL; Bourne JA; Rosa MG
    Eur J Neurosci; 2007 Mar; 25(6):1780-92. PubMed ID: 17432965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.