BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11941474)

  • 41. Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves.
    Li X; Gao MJ; Pan HY; Cui DJ; Gruber MY
    J Agric Food Chem; 2010 Feb; 58(3):1639-45. PubMed ID: 20073469
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitric Oxide Is Required for Melatonin-Enhanced Tolerance against Salinity Stress in Rapeseed (
    Zhao G; Zhao Y; Yu X; Kiprotich F; Han H; Guan R; Wang R; Shen W
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29966262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. miR395 is involved in detoxification of cadmium in Brassica napus.
    Zhang LW; Song JB; Shu XX; Zhang Y; Yang ZM
    J Hazard Mater; 2013 Apr; 250-251():204-11. PubMed ID: 23454459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis.
    Sun J; Jiang H; Xu Y; Li H; Wu X; Xie Q; Li C
    Plant Cell Physiol; 2007 Aug; 48(8):1148-58. PubMed ID: 17609218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants.
    Yamamoto A; Bhuiyan MN; Waditee R; Tanaka Y; Esaka M; Oba K; Jagendorf AT; Takabe T
    J Exp Bot; 2005 Jul; 56(417):1785-96. PubMed ID: 15883131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity.
    Upadhyaya CP; Venkatesh J; Gururani MA; Asnin L; Sharma K; Ajappala H; Park SW
    Biotechnol Lett; 2011 Nov; 33(11):2297-307. PubMed ID: 21750996
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory.
    Ohnishi M; Fukada-Tanaka S; Hoshino A; Takada J; Inagaki Y; Iida S
    Plant Cell Physiol; 2005 Feb; 46(2):259-67. PubMed ID: 15695437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2.
    Pérez-López U; Robredo A; Lacuesta M; Sgherri C; Muñoz-Rueda A; Navari-Izzo F; Mena-Petite A
    Physiol Plant; 2009 Jan; 135(1):29-42. PubMed ID: 19121097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. cDNA clones for salt-inducible genes from mustard (Brassica juncea).
    Gurjar AS; Roy P
    Indian J Biochem Biophys; 1994 Aug; 31(4):329-34. PubMed ID: 8002016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes on protein expression associated with salinity tolerance in Brassica cell cultures.
    Martín JP; Elavummoottil OC; Moreno ML
    Cell Biol Int; 1993 Sep; 17(9):839-45. PubMed ID: 8220310
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.
    Yıldız M; Terzi H
    Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deamination role of inducible glutamate dehydrogenase isoenzyme 7 in Brassica napus leaf protoplasts.
    Watanabe M; Yumi O; Itoh Y; Yasuda K; Kamachi K; Ratcliffe RG
    Phytochemistry; 2011 May; 72(7):587-93. PubMed ID: 21353684
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt.
    Cheng Z; Park E; Glick BR
    Can J Microbiol; 2007 Jul; 53(7):912-8. PubMed ID: 17898846
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves.
    Jia H; Shao M; He Y; Guan R; Chu P; Jiang H
    PLoS One; 2015; 10(12):e0144808. PubMed ID: 26691228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.
    Rossi L; Zhang W; Ma X
    Environ Pollut; 2017 Oct; 229():132-138. PubMed ID: 28582676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis.
    Luo J; Tang S; Peng X; Yan X; Zeng X; Li J; Li X; Wu G
    PLoS One; 2015; 10(10):e0138974. PubMed ID: 26448643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.
    Rossi L; Zhang W; Lombardini L; Ma X
    Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage.
    Long W; Zou X; Zhang X
    PLoS One; 2015; 10(2):e0116217. PubMed ID: 25679513
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of nickel stress on growth and some important physiological/biochemical attributes in some diverse canola (Brassica napus L.) cultivars.
    Ali MA; Ashraf M; Athar HR
    J Hazard Mater; 2009 Dec; 172(2-3):964-9. PubMed ID: 19699032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard.
    Nazar R; Khan MI; Iqbal N; Masood A; Khan NA
    Physiol Plant; 2014 Oct; 152(2):331-44. PubMed ID: 24547902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.