These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11942484)
21. Determination of red blood cell fatty acid profiles: Rapid and high-confident analysis by chemical ionization-gas chromatography-tandem mass spectrometry. Schober Y; Wahl HG; Renz H; Nockher WA J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1040():1-7. PubMed ID: 27880928 [TBL] [Abstract][Full Text] [Related]
22. Genotypic and Phenotypic Characterization of Stenotrophomonas maltophilia Strains from a Pediatric Tertiary Care Hospital in Serbia. Madi H; Lukić J; Vasiljević Z; Biočanin M; Kojić M; Jovčić B; Lozo J PLoS One; 2016; 11(10):e0165660. PubMed ID: 27798695 [TBL] [Abstract][Full Text] [Related]
23. Identification and Characterization of Phospholipids with Very Long Chain Fatty Acids in Brewer's Yeast. Řezanka T; Kolouchová I; Gharwalová L; Palyzová A; Sigler K Lipids; 2017 Dec; 52(12):1007-1017. PubMed ID: 28905226 [TBL] [Abstract][Full Text] [Related]
24. Cis-9-octadecenoic acid from the rhizospheric bacterium Stenotrophomonas maltophilia BJ01 shows quorum quenching and anti-biofilm activities. Singh VK; Kavita K; Prabhakaran R; Jha B Biofouling; 2013; 29(7):855-67. PubMed ID: 23844805 [TBL] [Abstract][Full Text] [Related]
25. Targeted quantitative analysis of fatty acids in atherosclerotic plaques by high sensitivity liquid chromatography/tandem mass spectrometry. Pettinella C; Lee SH; Cipollone F; Blair IA J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):168-76. PubMed ID: 17174160 [TBL] [Abstract][Full Text] [Related]
26. A novel highly charged exopolysaccharide produced by two strains of Stenotrophomonas maltophilia recovered from patients with cystic fibrosis. Cescutti P; Cuzzi B; Liut G; Segonds C; Di Bonaventura G; Rizzo R Carbohydr Res; 2011 Sep; 346(13):1916-23. PubMed ID: 21636078 [TBL] [Abstract][Full Text] [Related]
27. Gene cloning of an efficiency oleate hydratase from Stenotrophomonas nitritireducens for polyunsaturated fatty acids and its application in the conversion of plant oils to 10-hydroxy fatty acids. Kang WR; Seo MJ; Shin KC; Park JB; Oh DK Biotechnol Bioeng; 2017 Jan; 114(1):74-82. PubMed ID: 27474883 [TBL] [Abstract][Full Text] [Related]
28. Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism. Wang YS; Zheng XC; Hu QW; Zheng YG Res Microbiol; 2015 Jun; 166(5):408-418. PubMed ID: 25957243 [TBL] [Abstract][Full Text] [Related]
30. Occurrence and antagonistic potential of Stenotrophomonas strains isolated from deep-sea invertebrates. Romanenko LA; Uchino M; Tanaka N; Frolova GM; Slinkina NN; Mikhailov VV Arch Microbiol; 2008 Apr; 189(4):337-44. PubMed ID: 18034228 [TBL] [Abstract][Full Text] [Related]
31. Adaptation of Stenotrophomonas maltophilia in cystic fibrosis: molecular diversity, mutation frequency and antibiotic resistance. Vidigal PG; Dittmer S; Steinmann E; Buer J; Rath PM; Steinmann J Int J Med Microbiol; 2014 Jul; 304(5-6):613-9. PubMed ID: 24836944 [TBL] [Abstract][Full Text] [Related]
32. Analysis of the seed oil of Heisteria silvanii (Olacaceae)--a rich source of a novel C18 acetylenic fatty acid. Spitzer V; Tomberg W; Hartmann R; Aichholz R Lipids; 1997 Nov; 32(11):1189-200. PubMed ID: 9397405 [TBL] [Abstract][Full Text] [Related]
33. GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Rontani JF; Christodoulou S; Koblizek M Lipids; 2005 Jan; 40(1):97-108. PubMed ID: 15825835 [TBL] [Abstract][Full Text] [Related]
34. Hydroxylation of Fatty Acids by Lactic Acid Bacteria. Kanauchi M Methods Mol Biol; 2024; 2851():107-114. PubMed ID: 39210175 [TBL] [Abstract][Full Text] [Related]
35. The investigation of nematocidal activity in Stenotrophomonas maltophilia G2 and characterization of a novel virulence serine protease. Huang X; Liu J; Ding J; He Q; Xiong R; Zhang K Can J Microbiol; 2009 Aug; 55(8):934-42. PubMed ID: 19898533 [TBL] [Abstract][Full Text] [Related]
36. Conversion of linoleic acid into novel oxylipins by the mushroom Agaricus bisporus. Wadman MW; van Zadelhoff G; Hamberg M; Visser T; Veldink GA; Vliegenthart JF Lipids; 2005 Nov; 40(11):1163-70. PubMed ID: 16459929 [TBL] [Abstract][Full Text] [Related]
37. Insights into the degradation of chlorimuron-ethyl by Stenotrophomonas maltophilia D310-3. Zang H; Yu Q; Lv T; Cheng Y; Feng L; Cheng X; Li C Chemosphere; 2016 Feb; 144():176-84. PubMed ID: 26363318 [TBL] [Abstract][Full Text] [Related]
38. [Molecular epidemiology of Stenotrophomonas maltophilia strains isolated from paediatric patients]. Köseoğlu O; Sener B; Gür D Mikrobiyol Bul; 2004; 38(1-2):9-19. PubMed ID: 15293897 [TBL] [Abstract][Full Text] [Related]
39. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids. Kim KR; Oh HJ; Park CS; Hong SH; Park JY; Oh DK Biotechnol Bioeng; 2015 Nov; 112(11):2206-13. PubMed ID: 25952266 [TBL] [Abstract][Full Text] [Related]
40. Antifungal lipids produced by lactobacilli and their structural identification by normal phase LC/atmospheric pressure photoionization−MS/MS. Black BA; Sun C; Zhao YY; Gänzle MG; Curtis JM J Agric Food Chem; 2013 Jun; 61(22):5338-46. PubMed ID: 23706022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]