These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Nitrite and nitrate reduction by molybdenum centers of the nitrate reductase type: computational predictions on the catalytic mechanism. Silaghi-Dumitrescu R; Mich M; Matyas C; Cooper CE Nitric Oxide; 2012 Jan; 26(1):27-31. PubMed ID: 22138423 [TBL] [Abstract][Full Text] [Related]
25. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen. Flock U; Watmough NJ; Adelroth P Biochemistry; 2005 Aug; 44(31):10711-9. PubMed ID: 16060680 [TBL] [Abstract][Full Text] [Related]
26. Denitrification: microbiology and ecology. Knowles R Life Support Biosph Sci; 1996; 3(1-2):31-4. PubMed ID: 11539157 [TBL] [Abstract][Full Text] [Related]
28. Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism. Cordas CM; Duarte AG; Moura JJ; Moura I Biochim Biophys Acta; 2013 Mar; 1827(3):233-8. PubMed ID: 23142527 [TBL] [Abstract][Full Text] [Related]
29. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies. Chakraborty S; Reed J; Sage JT; Branagan NC; Petrik ID; Miner KD; Hu MY; Zhao J; Alp EE; Lu Y Inorg Chem; 2015 Oct; 54(19):9317-29. PubMed ID: 26274098 [TBL] [Abstract][Full Text] [Related]
30. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions. Zhao X; Yeung N; Russell BS; Garner DK; Lu Y J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438 [TBL] [Abstract][Full Text] [Related]
31. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes. Tosha T; Shiro Y IUBMB Life; 2013 Mar; 65(3):217-26. PubMed ID: 23378174 [TBL] [Abstract][Full Text] [Related]
32. From NO to OO: nitric oxide and dioxygen in bacterial respiration. Hendriks J; Gohlke U; Saraste M J Bioenerg Biomembr; 1998 Feb; 30(1):15-24. PubMed ID: 9623801 [TBL] [Abstract][Full Text] [Related]
33. Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Henry Y; Bessières P Biochimie; 1984 Apr; 66(4):259-89. PubMed ID: 6331530 [TBL] [Abstract][Full Text] [Related]
34. Further studies on redox-related activation and deactivation of E. coli nitrate reductase: a possible physiologically relevant role for the low potential [4Fe-4S] centres. Bennett B; Bray RC Biochem Soc Trans; 1994 Aug; 22(3):283S. PubMed ID: 7821542 [No Abstract] [Full Text] [Related]
35. Reduction of nitric oxide in bacterial nitric oxide reductase--a theoretical model study. Blomberg LM; Blomberg MR; Siegbahn PE Biochim Biophys Acta; 2006 Apr; 1757(4):240-52. PubMed ID: 16774734 [TBL] [Abstract][Full Text] [Related]
37. Old iron, young copper: from Mars to Venus. Crichton RR; Pierre JL Biometals; 2001 Jun; 14(2):99-112. PubMed ID: 11508852 [TBL] [Abstract][Full Text] [Related]
39. A Monohydrosulfidodinitrosyldiiron Complex That Generates N Pal N; White CJ; Demeshko S; Meyer F; Lehnert N; Majumdar A Inorg Chem; 2021 Nov; 60(21):15890-15900. PubMed ID: 34106714 [TBL] [Abstract][Full Text] [Related]
40. Characterization by electron paramagnetic resonance of the role of the Escherichia coli nitrate reductase (NarGHI) iron-sulfur clusters in electron transfer to nitrate and identification of a semiquinone radical intermediate. Magalon A; Rothery RA; Giordano G; Blasco F; Weiner JH J Bacteriol; 1997 Aug; 179(16):5037-45. PubMed ID: 9260944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]