These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11942848)

  • 1. A general method for determining the electron self-exchange rates of blue copper proteins by longitudinal NMR relaxation.
    Jensen MR; Hansen DF; Led JJ
    J Am Chem Soc; 2002 Apr; 124(15):4093-6. PubMed ID: 11942848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the electron self-exchange rates of blue copper proteins by super-WEFT NMR spectroscopy.
    Ma L; Philipp E; Led JJ
    J Biomol NMR; 2001 Mar; 19(3):199-208. PubMed ID: 11330808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of using approximate Bloch-McConnell equations in NMR analyses of chemically exchanging systems: application to the electron self-exchange of plastocyanin.
    Hansen DF; Led JJ
    J Magn Reson; 2003 Aug; 163(2):215-27. PubMed ID: 12914837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinvestigation of the method used to map the electronic structure of blue copper proteins by NMR relaxation.
    Flemming Hansen D; Gorelsky SI; Sarangi R; Hodgson KO; Hedman B; Christensen HE; Solomon EI; Led JJ
    J Biol Inorg Chem; 2006 Apr; 11(3):277-85. PubMed ID: 16432723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation of pseudoazurin in the 152 kDa electron transfer complex with nitrite reductase determined by paramagnetic NMR.
    Vlasie MD; Fernández-Busnadiego R; Prudêncio M; Ubbink M
    J Mol Biol; 2008 Feb; 375(5):1405-15. PubMed ID: 18083191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.
    Athwal NS; Alagurajan J; Sturms R; Fulton DB; Andreotti AH; Hargrove MS
    J Inorg Biochem; 2015 Sep; 150():139-47. PubMed ID: 26141377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the electronic structure of the blue copper site in plastocyanin by NMR relaxation.
    Hansen DF; Led JJ
    J Am Chem Soc; 2004 Feb; 126(4):1247-52. PubMed ID: 14746497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear-magnetic-resonance determination of the electron self-exchange rate constant of Clostridium pasteurianum rubredoxin.
    Gaillard J; Zhuang-Jackson H; Moulis JM
    Eur J Biochem; 1996 Jun; 238(2):346-9. PubMed ID: 8681944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
    Zhuravleva AV; Korzhnev DM; Kupce E; Arseniev AS; Billeter M; Orekhov VY
    J Mol Biol; 2004 Oct; 342(5):1599-611. PubMed ID: 15364584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the electron relaxation rates in paramagnetic metal complexes: applicability of available NMR methods.
    Jensen MR; Led JJ
    J Magn Reson; 2004 Apr; 167(2):169-77. PubMed ID: 15040973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of short-lived transient protein-protein interactions by intermolecular nuclear paramagnetic relaxation: plastocyanin from Anabaena variabilis.
    Hansen DF; Hass MA; Christensen HM; Ulstrup J; Led JJ
    J Am Chem Soc; 2003 Jun; 125(23):6858-9. PubMed ID: 12783525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (13)C[(13)C] 2D NMR: a novel strategy for the study of paramagnetic proteins with slow electronic relaxation rates.
    Machonkin TE; Westler WM; Markley JL
    J Am Chem Soc; 2002 Apr; 124(13):3204-5. PubMed ID: 11916393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins.
    Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP
    J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae.
    Arnesano F; Banci L; Bertini I; Felli IC; Luchinat C; Thompsett AR
    J Am Chem Soc; 2003 Jun; 125(24):7200-8. PubMed ID: 12797793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow dynamics in folded and unfolded states of an SH3 domain.
    Tollinger M; Skrynnikov NR; Mulder FA; Forman-Kay JD; Kay LE
    J Am Chem Soc; 2001 Nov; 123(46):11341-52. PubMed ID: 11707108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active-site structure and electron-transfer reactivity of plastocyanins.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2003 Feb; 125(8):2101-12. PubMed ID: 12590538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-field EPR on membrane proteins - crossing the gap to NMR.
    Möbius K; Lubitz W; Savitsky A
    Prog Nucl Magn Reson Spectrosc; 2013 Nov; 75():1-49. PubMed ID: 24160760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Paramagnetism to Slow Down Nuclear Relaxation in Protein NMR.
    Orton HW; Kuprov I; Loh CT; Otting G
    J Phys Chem Lett; 2016 Dec; 7(23):4815-4818. PubMed ID: 27934036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.