BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 11944917)

  • 1. Interaction of S100 proteins with the antiallergic drugs, olopatadine, amlexanox, and cromolyn: identification of putative drug binding sites on S100A1 protein.
    Okada M; Tokumitsu H; Kubota Y; Kobayashi R
    Biochem Biophys Res Commun; 2002 Apr; 292(4):1023-30. PubMed ID: 11944917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family.
    Shishibori T; Oyama Y; Matsushita O; Yamashita K; Furuichi H; Okabe A; Maeta H; Hata Y; Kobayashi R
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):583-9. PubMed ID: 10051426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct anti-allergic drugs, amlexanox and cromolyn, bind to the same kinds of calcium binding proteins, except calmodulin, in bovine lung extract.
    Oyama Y; Shishibori T; Yamashita K; Naya T; Nakagiri S; Maeta H; Kobayashi R
    Biochem Biophys Res Commun; 1997 Nov; 240(2):341-7. PubMed ID: 9388479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox.
    Okada M; Itoh H; Hatakeyama T; Tokumitsu H; Kobayashi R
    Biochem J; 2003 Sep; 374(Pt 2):433-41. PubMed ID: 12803546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of bovine S100A12 from recombinant Escherichia coli.
    Yamashita K; Oyama Y; Shishibori T; Matsushita O; Okabe A; Kobayashi R
    Protein Expr Purif; 1999 Jun; 16(1):47-52. PubMed ID: 10336859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular level interactions of S100A13 with amlexanox: inhibitor for formation of the multiprotein complex in the nonclassical pathway of acidic fibroblast growth factor.
    Rani SG; Mohan SK; Yu C
    Biochemistry; 2010 Mar; 49(11):2585-92. PubMed ID: 20178375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterodimeric interaction and interfaces of S100A1 and S100P.
    Wang G; Zhang S; Fernig DG; Spiller D; Martin-Fernandez M; Zhang H; Ding Y; Rao Z; Rudland PS; Barraclough R
    Biochem J; 2004 Aug; 382(Pt 1):375-83. PubMed ID: 15171681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olopatadine suppresses the migration of THP-1 monocytes induced by S100A12 protein.
    Kishimoto K; Kaneko S; Ohmori K; Tamura T; Hasegawa K
    Mediators Inflamm; 2006; 2006(1):42726. PubMed ID: 16864903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of effector binding sites on S100 beta: studies with guanylate cyclase and p80, a retinal phosphoprotein.
    Pozdnyakov N; Margulis A; Sitaramayya A
    Biochemistry; 1998 Jul; 37(30):10701-8. PubMed ID: 9692960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin.
    Mäler L; Sastry M; Chazin WJ
    J Mol Biol; 2002 Mar; 317(2):279-90. PubMed ID: 11902843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic residues in the C-terminal region of S100A1 are essential for target protein binding but not for dimerization.
    Osterloh D; Ivanenkov VV; Gerke V
    Cell Calcium; 1998 Aug; 24(2):137-51. PubMed ID: 9803314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity of S100A1 protein for calcium increases dramatically upon glutathionylation.
    Goch G; Vdovenko S; Kozłowska H; Bierzyñski A
    FEBS J; 2005 May; 272(10):2557-65. PubMed ID: 15885104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Ca2+ and Cu2+ requirements of the FGF1-S100A13 interaction measured by quartz crystal microbalance: an initial step in amlexanox-reversible non-classical release of FGF1.
    Matsunaga H; Ueda H
    Neurochem Int; 2008 May; 52(6):1076-85. PubMed ID: 18164517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S100A1 utilizes different mechanisms for interacting with calcium-dependent and calcium-independent target proteins.
    Landar A; Rustandi RR; Weber DJ; Zimmer DB
    Biochemistry; 1998 Dec; 37(50):17429-38. PubMed ID: 9860858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of S100 homodimerization and heterodimeric interactions by the yeast two-hybrid system.
    Deloulme JC; Gentil BJ; Baudier J
    Microsc Res Tech; 2003 Apr; 60(6):560-8. PubMed ID: 12645004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment docking to S100 proteins reveals a wide diversity of weak interaction sites.
    Arendt Y; Bhaumik A; Del Conte R; Luchinat C; Mori M; Porcu M
    ChemMedChem; 2007 Nov; 2(11):1648-54. PubMed ID: 17705319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional characterization of retinal calcium-dependent guanylate cyclase activator protein (CD-GCAP): identity with S100beta protein.
    Pozdnyakov N; Goraczniak R; Margulis A; Duda T; Sharma RK; Yoshida A; Sitaramayya A
    Biochemistry; 1997 Nov; 36(46):14159-66. PubMed ID: 9369488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of S100-target protein interactions.
    Zimmer DB; Wright Sadosky P; Weber DJ
    Microsc Res Tech; 2003 Apr; 60(6):552-9. PubMed ID: 12645003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-expression/co-location of S100 proteins (S100B, S100A1 and S100A2) and protein kinase C (PKC-beta, -eta and -zeta) in a rat model of cerebral basilar artery vasospasm.
    Lefranc F; Decaestecker C; Brotchi J; Heizmann CW; Dewitte O; Kiss R; Mijatovic T
    Neuropathol Appl Neurobiol; 2005 Dec; 31(6):649-60. PubMed ID: 16281914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+) binding protein S100A1 competes with calmodulin and PIP2 for binding site on the C-terminus of the TPRV1 receptor.
    Grycova L; Holendova B; Lansky Z; Bumba L; Jirku M; Bousova K; Teisinger J
    ACS Chem Neurosci; 2015 Mar; 6(3):386-92. PubMed ID: 25543978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.