BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 11944943)

  • 1. Epithelia-mesenchyme interaction plays an essential role in transdifferentiation of retinal pigment epithelium of silver mutant quail: localization of FGF and related molecules and aberrant migration pattern of neural crest cells during eye rudiment formation.
    Araki M; Takano T; Uemonsa T; Nakane Y; Tsudzuki M; Kaneko T
    Dev Biol; 2002 Apr; 244(2):358-71. PubMed ID: 11944943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early embryonic interaction of retinal pigment epithelium and mesenchymal tissue induces conversion of pigment epithelium to neural retinal fate in the silver mutation of the Japanese quail.
    Araki M; Yamao M; Tsudzuki M
    Dev Growth Differ; 1998 Apr; 40(2):167-76. PubMed ID: 9572359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous transdifferentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene.
    Mochii M; Ono T; Matsubara Y; Eguchi G
    Dev Biol; 1998 Apr; 196(2):145-59. PubMed ID: 9576828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster.
    Mitsuda S; Yoshii C; Ikegami Y; Araki M
    Dev Biol; 2005 Apr; 280(1):122-32. PubMed ID: 15766753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia.
    Sakaguchi DS; Janick LM; Reh TA
    Dev Dyn; 1997 Aug; 209(4):387-98. PubMed ID: 9264262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genes involved in the morphogenesis of the eye.
    Matsuo T
    Jpn J Ophthalmol; 1993; 37(3):215-51. PubMed ID: 7905035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell.
    Mochii M; Mazaki Y; Mizuno N; Hayashi H; Eguchi G
    Dev Biol; 1998 Jan; 193(1):47-62. PubMed ID: 9466887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation.
    Araki M
    Dev Growth Differ; 2007 Feb; 49(2):109-20. PubMed ID: 17335432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development.
    Halfter W
    J Comp Neurol; 1988 Feb; 268(2):161-70. PubMed ID: 3360983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules.
    Faraco CD; Vaz SA; Pástor MV; Erickson CA
    Dev Dyn; 2001 Mar; 220(3):212-25. PubMed ID: 11241830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos.
    Le Lièvre CS; Le Douarin NM
    J Embryol Exp Morphol; 1975 Aug; 34(1):125-54. PubMed ID: 1185098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse.
    Bumsted KM; Barnstable CJ
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):903-8. PubMed ID: 10711712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular localization and signaling activity of beta-catenin in migrating neural crest cells.
    de Melker AA; Desban N; Duband JL
    Dev Dyn; 2004 Aug; 230(4):708-26. PubMed ID: 15254905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of chondroitin sulfate proteoglycans from embryonic quail that influence neural crest cell behavior.
    Kerr RS; Newgreen DF
    Dev Biol; 1997 Dec; 192(1):108-24. PubMed ID: 9405101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant.
    Lee CS; May NR; Fan CM
    Dev Biol; 2001 Aug; 236(1):17-29. PubMed ID: 11456441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of retinal pigment epithelium in vitro by transdifferentiation of neural retina cells.
    Opas M; Davies JR; Zhou Y; Dziak E
    Int J Dev Biol; 2001 Jun; 45(4):633-42. PubMed ID: 11460999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in cell adhesion and extracellular matrix molecules in spontaneous spinal neural tube defects in avian embryos.
    Newgreen DF; Kerr RS; Minichiello J; Warren N
    Teratology; 1997 Mar; 55(3):195-207. PubMed ID: 9181673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular implantation of DNA-transfected retinal pigment epithelium cells: a new approach for analyzing molecular functions in the newt retinal regeneration.
    Chiba C; Nakamura K; Unno S; Saito T
    Neurosci Lett; 2004 Sep; 368(2):171-5. PubMed ID: 15351443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural and angiogenic defects in eyes of transgenic mice expressing a dominant-negative FGF receptor in the pigmented cells.
    Rousseau B; Dubayle D; Sennlaub F; Jeanny JC; Costet P; Bikfalvi A; Javerzat S
    Exp Eye Res; 2000 Oct; 71(4):395-404. PubMed ID: 10995560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.