These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11945041)

  • 21. A new approach for obtaining sequential assignment of large proteins.
    Permi P; Annila A
    J Biomol NMR; 2001 Jun; 20(2):127-33. PubMed ID: 11495244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction.
    Rovnyak D; Frueh DP; Sastry M; Sun ZY; Stern AS; Hoch JC; Wagner G
    J Magn Reson; 2004 Sep; 170(1):15-21. PubMed ID: 15324754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A selective experiment for the sequential protein backbone assignment from 3D heteronuclear spectra.
    Bermel W; Bertini I; Felli IC; Pierattelli R; Vasos PR
    J Magn Reson; 2005 Feb; 172(2):324-8. PubMed ID: 15649759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential HNCACB and CBCANH protein NMR pulse sequences.
    Meissner A; Sørensen OW
    J Magn Reson; 2001 Aug; 151(2):328-31. PubMed ID: 11531355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.
    Wei Q; Chen J; Mi J; Zhang J; Ruan K; Wu J
    Chemistry; 2016 Jul; 22(28):9556-64. PubMed ID: 27276173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of two simplified 15N-NMR methods for determining micros-ms dynamics of proteins.
    Hass MA; Led JJ
    Magn Reson Chem; 2006 Aug; 44(8):761-9. PubMed ID: 16705625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alanine check points in HNN and HN(C)N spectra.
    Chatterjee A; Kumar A; Hosur RV
    J Magn Reson; 2006 Jul; 181(1):21-8. PubMed ID: 16574444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of diagonal peaks in three-dimensional protein NMR TROSY-type HCCH correlation experiments.
    Meissner A; Sorensen OW
    J Magn Reson; 2000 May; 144(1):171-4. PubMed ID: 10783289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assignments of carbon NMR resonances for microcrystalline ubiquitin.
    Igumenova TI; McDermott AE; Zilm KW; Martin RW; Paulson EK; Wand AJ
    J Am Chem Soc; 2004 Jun; 126(21):6720-7. PubMed ID: 15161300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The set of triple-resonance sequences with a multiple quantum coherence evolution period.
    Koźmiński W; Zhukov I
    J Magn Reson; 2004 Dec; 171(2):338-44. PubMed ID: 15546761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR.
    Cisnetti F; Loth K; Pelupessy P; Bodenhausen G
    Chemphyschem; 2004 Jun; 5(6):807-14. PubMed ID: 15253308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy.
    Kehlet C; Bjerring M; Sivertsen AC; Kristensen T; Enghild JJ; Glaser SJ; Khaneja N; Nielsen NC
    J Magn Reson; 2007 Oct; 188(2):216-30. PubMed ID: 17681479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HNCA-TOCSY-CANH experiments with alternate (13)C- (12)C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment.
    Takeuchi K; Gal M; Takahashi H; Shimada I; Wagner G
    J Biomol NMR; 2011 Jan; 49(1):17-26. PubMed ID: 21110064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional NMR spectroscopy for protein characterization and assignment inside cells.
    Reardon PN; Spicer LD
    J Am Chem Soc; 2005 Aug; 127(31):10848-9. PubMed ID: 16076188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-specific variations of carbonyl chemical shift anisotropies in proteins.
    Markwick PR; Sattler M
    J Am Chem Soc; 2004 Sep; 126(37):11424-5. PubMed ID: 15366873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A general strategy for the assignment of aliphatic side-chain resonances of uniformly 13C,15N-labeled large proteins.
    Xu Y; Lin Z; Ho C; Yang D
    J Am Chem Soc; 2005 Aug; 127(34):11920-1. PubMed ID: 16117513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme.
    Korzhnev DM; Kloiber K; Kanelis V; Tugarinov V; Kay LE
    J Am Chem Soc; 2004 Mar; 126(12):3964-73. PubMed ID: 15038751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the backbone torsion psi angle by tensor correlation of chemical shift anisotropy and heteronuclear dipole-dipole interaction.
    Mou Y; Tsai TW; Chan JC
    Solid State Nucl Magn Reson; 2007 Apr; 31(2):72-81. PubMed ID: 17329083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of chemical shift anisotropies of unresolved carbonyl sites by C-alpha detection under magic-angle spinning.
    Mou Y; Chen PH; Lee HW; Chan JC
    J Magn Reson; 2007 Aug; 187(2):352-6. PubMed ID: 17524685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.