These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11945232)

  • 21. Inclusion of homologous DNA in nuclease-mediated gene targeting facilitates a higher incidence of bi-allelically modified cells.
    Beaton BP; Kwon DN; Choi YJ; Kim JH; Samuel MS; Benne JA; Wells KD; Lee K; Kim JH; Prather RS
    Xenotransplantation; 2015; 22(5):379-90. PubMed ID: 26381494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.
    McCreath KJ; Howcroft J; Campbell KH; Colman A; Schnieke AE; Kind AJ
    Nature; 2000 Jun; 405(6790):1066-9. PubMed ID: 10890449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.
    Gao H; Zhao C; Xiang X; Li Y; Zhao Y; Li Z; Pan D; Dai Y; Hara H; Cooper DK; Cai Z; Mou L
    J Reprod Dev; 2017 Feb; 63(1):17-26. PubMed ID: 27725344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Construction of prnp gene knockout vector and its transfection in eukaryotic cell].
    Zhang H; Cheng P; Lan J; Song Y; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Mar; 26(3):297-304. PubMed ID: 20518340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Progress in producing knockout models for xenotransplantation by nuclear transfer.
    Lai L; Prather RS
    Ann Med; 2002; 34(7-8):501-6. PubMed ID: 12553489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific genetic modifications of domestic animals by gene targeting and animal cloning.
    Wang B; Zhou J
    Reprod Biol Endocrinol; 2003 Nov; 1():103. PubMed ID: 14614774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient method for producing alpha(1,3)-galactosyltransferase gene knockout pigs.
    Harrison S; Boquest A; Grupen C; Faast R; Guildolin A; Giannakis C; Crocker L; McIlfatrick S; Ashman R; Wengle J; Lyons I; Tolstoshev P; Cowan P; Robins A; O'Connell P; D'Apice AJ; Nottle M
    Cloning Stem Cells; 2004; 6(4):327-31. PubMed ID: 15671659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct sequencing of PCR amplified pig PrP genes.
    Martin T; Hughes S; Hughes K; Dawson M
    Biochim Biophys Acta; 1995 Apr; 1270(2-3):211-4. PubMed ID: 7727546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear localization signal and cell synchrony enhance gene targeting efficiency in primary fetal fibroblasts.
    Mir B; Piedrahita JA
    Nucleic Acids Res; 2004 Feb; 32(3):e25. PubMed ID: 14960709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39.
    Choi K; Shim J; Ko N; Eom H; Kim J; Lee JW; Jin DI; Kim H
    Transgenic Res; 2017 Apr; 26(2):209-224. PubMed ID: 27830476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning pigs: advances and applications.
    Polejaeva IA
    Reprod Suppl; 2001; 58():293-300. PubMed ID: 11980197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creation of non-human primate neurogenetic disease models by gene targeting and nuclear transfer.
    Norgren RB
    Reprod Biol Endocrinol; 2004 Jun; 2():40. PubMed ID: 15200671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation by somatic cell nuclear transfer of GGTA1 knockout pigs expressing soluble human TNFRI-Fc and human HO-1.
    Kim GA; Lee EM; Cho B; Alam Z; Kim SJ; Lee S; Oh HJ; Hwang JI; Ahn C; Lee BC
    Transgenic Res; 2019 Feb; 28(1):91-102. PubMed ID: 30552552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells.
    Denning C; Priddle H
    Reproduction; 2003 Jul; 126(1):1-11. PubMed ID: 12814342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting.
    Chen F; Wang Y; Yuan Y; Zhang W; Ren Z; Jin Y; Liu X; Xiong Q; Chen Q; Zhang M; Li X; Zhao L; Li Z; Wu Z; Zhang Y; Hu F; Huang J; Li R; Dai Y
    J Genet Genomics; 2015 Aug; 42(8):437-44. PubMed ID: 26336800
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Zhou ZP; Yang LL; Cao H; Chen ZR; Zhang Y; Wen XY; Hu J
    Hum Gene Ther; 2019 Sep; 30(9):1101-1116. PubMed ID: 31099266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of α1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology.
    Kang JT; Kwon DK; Park AR; Lee EJ; Yun YJ; Ji DY; Lee K; Park KW
    J Vet Sci; 2016 Mar; 17(1):89-96. PubMed ID: 27051344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterozygous disruption of the alpha1,3-galactosyltransferase gene in cattle.
    Sendai Y; Sawada T; Urakawa M; Shinkai Y; Kubota K; Teraoka S; Hoshi H; Aoyagi Y
    Transplantation; 2003 Sep; 76(6):900-2. PubMed ID: 14508351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-specific modification of the bovine genome using Cre recombinase-mediated gene targeting.
    Graham C; Cole S; Laible G
    Biotechnol J; 2009 Jan; 4(1):108-18. PubMed ID: 19156732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.