These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11945405)

  • 1. Increased rate of cyclic photophophorylation in preparations from Anabaena variabilis cells grown in the presence of diphenylamine.
    Neumann J; Ogawa T; Vernon LP
    FEBS Lett; 1970 Oct; 10(4):253-256. PubMed ID: 11945405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lag phase of CO2-dependent O2 evolution by illuminated Anabaena variabilis cells.
    Samuilov VD; Fedorenko TA
    Biochemistry (Mosc); 1999 Jun; 64(6):610-9. PubMed ID: 10395973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of Anabaena variabilis cells grown in the presence of diphenylamine.
    Ogawa T; Vernon LP; Yamamoto HY
    Biochim Biophys Acta; 1970 Mar; 197(2):302-7. PubMed ID: 4391995
    [No Abstract]   [Full Text] [Related]  

  • 4. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow.
    Hellingwerf KJ; Michels PA; Dorpema JW; Konings WN
    Eur J Biochem; 1975 Jul; 55(2):397-406. PubMed ID: 1081452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased content of cytochromes 554 and 562 in Anabaena variabilis cells grown in the presence of diphenylamine.
    Ogawa T; Vernon LP
    Biochim Biophys Acta; 1971 Jan; 226(1):88-97. PubMed ID: 4994399
    [No Abstract]   [Full Text] [Related]  

  • 6. The coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413.
    Schmetterer G; Valladares A; Pils D; Steinbach S; Pacher M; Muro-Pastor AM; Flores E; Herrero A
    J Bacteriol; 2001 Nov; 183(21):6429-34. PubMed ID: 11591688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413.
    Mannan RM; Pakrasi HB
    Plant Physiol; 1993 Nov; 103(3):971-7. PubMed ID: 8022943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of partially purified photosynthetic reaction centers from Scenedesmus mutant 6E and Anabaena variabilis grown in the presence of diphenylamine.
    Ogawa T; Vernon LP
    Biochim Biophys Acta; 1970 Mar; 197(2):292-301. PubMed ID: 4391994
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of potassium uptake in the sodium-resistant (NaCl(r)) and thalium-resistant (TlCl(r)) mutant strain of diazotrophic cyanobacterium Anabaena variabilis.
    Chauhan VS; Singh B; Singh S; Bisen PS
    Curr Microbiol; 2003 Jan; 46(1):59-64. PubMed ID: 12432466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the monocistronic rca gene in Anabaena variabilis suggests a physiological ribulose bisphosphate carboxylase/oxygenase activase-like function in heterocystous cyanobacteria.
    Li LA; Zianni MR; Tabita FR
    Plant Mol Biol; 1999 Jun; 40(3):467-78. PubMed ID: 10437830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413.
    Thiel T; Pratte B; Zahalak M
    Arch Microbiol; 2002 Dec; 179(1):50-6. PubMed ID: 12471504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrogen starvation on the level of adenosine 3',5'-monophosphate in Anabaena variabilis.
    Hood EE; Armour S; Ownby JD; Handa AK; Bressan RA
    Biochim Biophys Acta; 1979 Dec; 588(2):193-200. PubMed ID: 228756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of Anabaena variabilis influencing plaque formation by cyanophage N-1.
    Currier TC; Wolk CP
    J Bacteriol; 1979 Jul; 139(1):88-92. PubMed ID: 110787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of hydrogenase activity in vegetative cells of Anabaena variabilis.
    Spiller H; Bookjans G; Shanmugam KT
    J Bacteriol; 1983 Jul; 155(1):129-37. PubMed ID: 6408057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radical production from the aerobic oxidation of reduced pyridine nucleotides catalysed by phenazine derivatives.
    Davis G; Thornalley PJ
    Biochim Biophys Acta; 1983 Sep; 724(3):456-64. PubMed ID: 6311259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interaction of cyanobacteria cells with methyl viologen].
    Nikitina KA; Gusev MV
    Mikrobiologiia; 1980; 49(4):483-8. PubMed ID: 6774211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of fructose transport and its effect on fructose toxicity in Anabaena spp.
    Ungerer JL; Pratte BS; Thiel T
    J Bacteriol; 2008 Dec; 190(24):8115-25. PubMed ID: 18931119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thylakoid morphology of the cyanobacteria Anabaena variabilis and Nostoc MAC grown under light and dark conditions.
    Peschek GA; Sleytr UB
    J Ultrastruct Res; 1983 Feb; 82(2):233-9. PubMed ID: 6402604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonium (methylammonium) transport by heterocysts and vegetative cells of Anabaena variabilis.
    Shehawy RM; Kleiner D
    FEMS Microbiol Lett; 1999 Dec; 181(2):303-6. PubMed ID: 10585553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis.
    Thiel T
    J Bacteriol; 1993 Oct; 175(19):6276-86. PubMed ID: 8407800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.