These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 11948185)
1. A nick-sensing DNA 3'-repair enzyme from Arabidopsis. Petrucco S; Volpi G; Bolchi A; Rivetti C; Ottonello S J Biol Chem; 2002 Jun; 277(26):23675-83. PubMed ID: 11948185 [TBL] [Abstract][Full Text] [Related]
2. Sensing DNA damage by PARP-like fingers. Petrucco S Nucleic Acids Res; 2003 Dec; 31(23):6689-99. PubMed ID: 14627802 [TBL] [Abstract][Full Text] [Related]
3. Solution structure and DNA binding of the zinc-finger domain from DNA ligase IIIalpha. Kulczyk AW; Yang JC; Neuhaus D J Mol Biol; 2004 Aug; 341(3):723-38. PubMed ID: 15288782 [TBL] [Abstract][Full Text] [Related]
4. Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases. Vance JR; Wilson TE Mol Cell Biol; 2001 Nov; 21(21):7191-8. PubMed ID: 11585902 [TBL] [Abstract][Full Text] [Related]
5. Phototriggered formation and repair of DNA containing a site-specific single strand break of the type produced by ionizing radiation or AP lyase activity. Zhang K; Taylor JS Biochemistry; 2001 Jan; 40(1):153-9. PubMed ID: 11141065 [TBL] [Abstract][Full Text] [Related]
6. Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. West CE; Waterworth WM; Jiang Q; Bray CM Plant J; 2000 Oct; 24(1):67-78. PubMed ID: 11029705 [TBL] [Abstract][Full Text] [Related]
7. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. Klemm T; Mannuß A; Kobbe D; Knoll A; Trapp O; Dorn A; Puchta H Plant J; 2017 Aug; 91(4):725-740. PubMed ID: 28509359 [TBL] [Abstract][Full Text] [Related]
8. Molecular characterization of Plasmodium falciparum putative polynucleotide kinase/phosphatase. Siribal S; Weinfeld M; Karimi-Busheri F; Mark Glover JN; Bernstein NK; Aceytuno D; Chavalitshewinkoon-Petmitr P Mol Biochem Parasitol; 2011 Nov; 180(1):1-7. PubMed ID: 21821066 [TBL] [Abstract][Full Text] [Related]
9. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. Harrison L; Hatahet Z; Wallace SS J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822 [TBL] [Abstract][Full Text] [Related]
10. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. Vu GTH; Cao HX; Reiss B; Schubert I New Phytol; 2017 Jun; 214(4):1712-1721. PubMed ID: 28245065 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms of DNA damage and repair: progress in plants. Tuteja N; Singh MB; Misra MK; Bhalla PL; Tuteja R Crit Rev Biochem Mol Biol; 2001; 36(4):337-97. PubMed ID: 11563486 [TBL] [Abstract][Full Text] [Related]
12. Processing of model single-strand breaks in phi X-174 RF transfecting DNA by Escherichia coli. Kow YW; Faundez G; Melamede RJ; Wallace SS Radiat Res; 1991 Jun; 126(3):357-66. PubMed ID: 1852023 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis ZDP DNA 3'-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases. Córdoba-Cañero D; Roldán-Arjona T; Ariza RR Plant J; 2014 Sep; 79(5):824-34. PubMed ID: 24934622 [TBL] [Abstract][Full Text] [Related]
14. Characterization of an ATP-regulated DNA-processing enzyme and thermotolerant phosphoesterase in the radioresistant bacterium Deinococcus radiodurans. Kota S; Kumar CV; Misra HS Biochem J; 2010 Oct; 431(1):149-57. PubMed ID: 20658964 [TBL] [Abstract][Full Text] [Related]
15. Identification of a unique insertion in plant organellar DNA polymerases responsible for 5'-dRP lyase and strand-displacement activities: Implications for Base Excision Repair. Trasviña-Arenas CH; Baruch-Torres N; Cordoba-Andrade FJ; Ayala-García VM; García-Medel PL; Díaz-Quezada C; Peralta-Castro A; Ordaz-Ortiz JJ; Brieba LG DNA Repair (Amst); 2018 May; 65():1-10. PubMed ID: 29522990 [TBL] [Abstract][Full Text] [Related]
16. [Double strand break repair, one mechanism can hide another: alternative non-homologous end joining]. Rass E; Grabarz A; Bertrand P; Lopez BS Cancer Radiother; 2012 Feb; 16(1):1-10. PubMed ID: 21737335 [TBL] [Abstract][Full Text] [Related]
17. Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks. Bekker-Jensen S; Fugger K; Danielsen JR; Gromova I; Sehested M; Celis J; Bartek J; Lukas J; Mailand N J Biol Chem; 2007 Jul; 282(27):19638-43. PubMed ID: 17507382 [TBL] [Abstract][Full Text] [Related]
18. Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Marintchev A; Mullen MA; Maciejewski MW; Pan B; Gryk MR; Mullen GP Nat Struct Biol; 1999 Sep; 6(9):884-93. PubMed ID: 10467102 [TBL] [Abstract][Full Text] [Related]
19. XRCC1 and DNA strand break repair. Caldecott KW DNA Repair (Amst); 2003 Sep; 2(9):955-69. PubMed ID: 12967653 [TBL] [Abstract][Full Text] [Related]
20. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Tamura K; Adachi Y; Chiba K; Oguchi K; Takahashi H Plant J; 2002 Mar; 29(6):771-81. PubMed ID: 12148535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]