BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 11948241)

  • 1. Generation of reactive oxygen species by the mitochondrial electron transport chain.
    Liu Y; Fiskum G; Schubert D
    J Neurochem; 2002 Mar; 80(5):780-7. PubMed ID: 11948241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.
    Lenaz G
    IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax.
    Starkov AA; Polster BM; Fiskum G
    J Neurochem; 2002 Oct; 83(1):220-8. PubMed ID: 12358746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
    Tretter L; Takacs K; Hegedus V; Adam-Vizi V
    J Neurochem; 2007 Feb; 100(3):650-63. PubMed ID: 17263793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I.
    Gladyshev GV; Grivennikova VG; Vinogradov AD
    FEBS Lett; 2018 Jul; 592(13):2213-2219. PubMed ID: 29851085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III.
    Bailey SM; Pietsch EC; Cunningham CC
    Free Radic Biol Med; 1999 Oct; 27(7-8):891-900. PubMed ID: 10515594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury.
    Stepanova A; Sosunov S; Niatsetskaya Z; Konrad C; Starkov AA; Manfredi G; Wittig I; Ten V; Galkin A
    Antioxid Redox Signal; 2019 Sep; 31(9):608-622. PubMed ID: 31037949
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of hexavalent chromium on electron leakage of respiratory chain in mitochondria isolated from rat liver.
    Xie Y; Zhong C; Zeng M; Guan L; Luo L
    Cell Physiol Biochem; 2013; 31(2-3):473-85. PubMed ID: 23548633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese ions enhance mitochondrial H
    Bonke E; Siebels I; Zwicker K; Dröse S
    Free Radic Biol Med; 2016 Oct; 99():43-53. PubMed ID: 27474449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of parkinson's disease.
    Ebadi M; Govitrapong P; Sharma S; Muralikrishnan D; Shavali S; Pellett L; Schafer R; Albano C; Eken J
    Biol Signals Recept; 2001; 10(3-4):224-53. PubMed ID: 11351130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.
    Quinlan CL; Perevoshchikova IV; Hey-Mogensen M; Orr AL; Brand MD
    Redox Biol; 2013; 1(1):304-12. PubMed ID: 24024165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.
    Gyulkhandanyan AV; Pennefather PS
    J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain.
    Markevich NI; Hoek JB
    Biochim Biophys Acta; 2015; 1847(6-7):656-79. PubMed ID: 25868872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.