These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11948454)

  • 1. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor.
    Jeevarajan AS; Vani S; Taylor TD; Anderson MM
    Biotechnol Bioeng; 2002 May; 78(4):467-72. PubMed ID: 11948454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term continuous monitoring of dissolved oxygen in cell culture medium for perfused bioreactors using optical oxygen sensors.
    Gao FG; Jeevarajan AS; Anderson MM
    Biotechnol Bioeng; 2004 May; 86(4):425-33. PubMed ID: 15112295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous glucose monitoring and control in a rotating wall perfused bioreactor.
    Xu Y; Sun J; Mathew G; Jeevarajan AS; Anderson MM
    Biotechnol Bioeng; 2004 Aug; 87(4):473-7. PubMed ID: 15286984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical sensor based on fluorescent quenching and pulsed blue LED excitation for long-term monitoring of dissolved oxygen in NASA space bioreactors.
    Gao FG; Fay JM; Mathew G; Jeevarajan AS; Anderson MM
    J Biomed Opt; 2005; 10(5):054005. PubMed ID: 16292965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the paratrend multi-analyte sensor for potential utilization in long-duration automated cell culture monitoring.
    Hwang EY; Pappas D; Jeevarajan AS; Anderson MM
    Biomed Microdevices; 2004 Sep; 6(3):241-9. PubMed ID: 15377834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical analysis of perfusion bioreactor cell concentration in an acoustic separator.
    Gorenflo VM; Chow VS; Chou C; Piret JM
    Biotechnol Bioeng; 2005 Nov; 92(4):514-8. PubMed ID: 16155953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical sensor for interstitial pH measurements.
    Baldini F; Giannetti A; Mencaglia AA
    J Biomed Opt; 2007; 12(2):024024. PubMed ID: 17477739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATR-FTIR sensor development for continuous on-line monitoring of chlorinated aliphatic hydrocarbons in a fixed-bed bioreactor.
    Acha V; Meurens M; Naveau H; Agathos SN
    Biotechnol Bioeng; 2000 Jun; 68(5):473-87. PubMed ID: 10797233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment.
    Wu MH; Lin JL; Wang J; Cui Z; Cui Z
    Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of fluorimetric pH sensors for bioprocess monitoring at low pH.
    Janzen NH; Schmidt M; Krause C; Weuster-Botz D
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1685-92. PubMed ID: 25969385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal optical system: a novel noninvasive sensor to study mixing.
    Vallejos JR; Kostov Y; Marten MR; Rao G
    Biotechnol Prog; 2005; 21(5):1531-6. PubMed ID: 16209558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture.
    Ge X; Hanson M; Shen H; Kostov Y; Brorson KA; Frey DD; Moreira AR; Rao G
    J Biotechnol; 2006 Apr; 122(3):293-306. PubMed ID: 16423420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture.
    Hanson MA; Ge X; Kostov Y; Brorson KA; Moreira AR; Rao G
    Biotechnol Bioeng; 2007 Jul; 97(4):833-41. PubMed ID: 17216654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application.
    Kermis HR; Kostov Y; Harms P; Rao G
    Biotechnol Prog; 2002; 18(5):1047-53. PubMed ID: 12363356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.
    Takahashi MB; Leme J; Caricati CP; Tonso A; Fernández Núñez EG; Rocha JC
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):1045-54. PubMed ID: 25552348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH.
    Kocincová AS; Nagl S; Arain S; Krause C; Borisov SM; Arnold M; Wolfbeis OS
    Biotechnol Bioeng; 2008 Jun; 100(3):430-8. PubMed ID: 18383124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a medical fiber-optic pH sensor based on optical absorption.
    Wolthuis R; McCrae D; Saaski E; Hartl J; Mitchell G
    IEEE Trans Biomed Eng; 1992 May; 39(5):531-7. PubMed ID: 1526644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically remote-controlled optical sensor spheres for monitoring oxygen or pH.
    Mistlberger G; Koren K; Borisov SM; Klimant I
    Anal Chem; 2010 Mar; 82(5):2124-8. PubMed ID: 20121206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RWPV bioreactor mass transport: earth-based and in microgravity.
    Begley CM; Kleis SJ
    Biotechnol Bioeng; 2002 Nov; 80(4):465-76. PubMed ID: 12325155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor.
    Margolis L; Hatfill S; Chuaqui R; Vocke C; Emmert-Buck M; Linehan WM; Duray PH
    J Urol; 1999 Jan; 161(1):290-7. PubMed ID: 10037426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.