These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11948454)

  • 41. [Application of AOTF in spectral analysis. 1. Hardware and software designs for the self-constructed visible AOTF spectrophotometer].
    He JY; Peng RF; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Feb; 22(1):67-70. PubMed ID: 12940031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of a fiber optic probe for spectral measurements and the continuous recording of the turbidity of growing microbial cultures.
    Robrish SA; LeRoy AF; Chassy BM; Wilson JJ; Krichevsky MI
    Appl Microbiol; 1971 Feb; 21(2):278-87. PubMed ID: 4927404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simple fibre optic spectrophotometric cell for pH determination.
    Besar SS; Kelly SW; Greenhalgh PA
    J Biomed Eng; 1989 Mar; 11(2):151-6. PubMed ID: 2704218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity dependences on side length and aspect ratio of a diaphragm in a glass-based guided-wave optical pressure sensor.
    Nikkuni H; Watanabe Y; Ohkawa M; Sato T
    Opt Express; 2008 Sep; 16(19):15024-32. PubMed ID: 18795039
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD).
    Puskeiler R; Kaufmann K; Weuster-Botz D
    Biotechnol Bioeng; 2005 Mar; 89(5):512-23. PubMed ID: 15669089
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.
    Tric M; Lederle M; Neuner L; Dolgowjasow I; Wiedemann P; Wölfl S; Werner T
    Anal Bioanal Chem; 2017 Sep; 409(24):5711-5721. PubMed ID: 28730310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methodology for real-time, multianalyte monitoring of fermentations using an in-situ mid-infrared sensor.
    Kornmann H; Rhiel M; Cannizzaro C; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Jun; 82(6):702-9. PubMed ID: 12673770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of the blood gas analyzer for pH measurements in IVF culture medium: Prevent suboptimal culture conditions.
    Diaz de Pool JDN; Van Den Berg SAA; Pilgram GSK; Ballieux BEPB; Van Der Westerlaken LAJ
    PLoS One; 2018; 13(11):e0206707. PubMed ID: 30418977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A completely noninvasive method of dissolved oxygen monitoring in disposable small-scale cell culture vessels based on diffusion through permeable vessel walls.
    Gupta PA; Ge X; Kostov Y; Rao G
    Biotechnol Prog; 2014; 30(1):172-7. PubMed ID: 24265101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A systematic approach for scale-down model development and characterization of commercial cell culture processes.
    Li F; Hashimura Y; Pendleton R; Harms J; Collins E; Lee B
    Biotechnol Prog; 2006; 22(3):696-703. PubMed ID: 16739951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.
    Zhang Y; Stobbe P; Silvander CO; Chotteau V
    J Biotechnol; 2015 Nov; 213():28-41. PubMed ID: 26211737
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptomics as a tool for assessing the scalability of mammalian cell perfusion systems.
    Jayapal KP; Goudar CT
    Adv Biochem Eng Biotechnol; 2014; 139():227-43. PubMed ID: 23949697
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noninvasive measurement of pH in platelet concentrates with a fiber optic fluorescence detector.
    Reed MW; Geelhood S; Barker LM; Pfalzgraf R; Vlaar R; Gouwerok E; De Cuyper IM; Harris P; Verhoeven AJ; de Korte D
    Transfusion; 2009 Jun; 49(6):1233-41. PubMed ID: 19290994
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overcoming challenges in WAVE Bioreactors without feedback controls for pH and dissolved oxygen.
    Yuk IH; Baskar D; Duffy PH; Hsiung J; Leung S; Lin AA
    Biotechnol Prog; 2011; 27(5):1397-406. PubMed ID: 21987370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state.
    Hug TS; Prenosil JE; Morbidelli M
    Biosens Bioelectron; 2001 Dec; 16(9-12):865-74. PubMed ID: 11679265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor.
    Zhong N; Liao Q; Zhu X; Chen R
    Anal Chem; 2014 Apr; 86(8):3994-4001. PubMed ID: 24697651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues.
    Zhang E; Laufer J; Beard P
    Appl Opt; 2008 Feb; 47(4):561-77. PubMed ID: 18239717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The bioreactor: a powerful tool for large-scale culture of animal cells.
    Wang D; Liu W; Han B; Xu R
    Curr Pharm Biotechnol; 2005 Oct; 6(5):397-403. PubMed ID: 16248813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical multilayers for LED-based surface plasmon resonance sensors.
    Slavík R; Homola J
    Appl Opt; 2006 Jun; 45(16):3752-9. PubMed ID: 16724133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-cost microbioreactor for high-throughput bioprocessing.
    Kostov Y; Harms P; Randers-Eichhorn L; Rao G
    Biotechnol Bioeng; 2001 Feb; 72(3):346-52. PubMed ID: 11135205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.