These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11948878)

  • 21. A detailed comparison of the refined structures of cytochrome c3 molecules from two strains in Desulfovibrio vulgaris: the relationship between the heme structures and their redox properties.
    Higuchi Y; Akutsu H; Yasuoka N
    Biochimie; 1994; 76(6):537-45. PubMed ID: 7880892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics and interaction studies between cytochrome c3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough.
    Brugna M; Giudici-Orticoni MT; Spinelli S; Brown K; Tegoni M; Bruschi M
    Proteins; 1998 Dec; 33(4):590-600. PubMed ID: 9849942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3.
    Schlereth DD; Fernández VM; Mäntele W
    Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cytochrome c3-[Fe]-hydrogenase electron-transfer complex: structural model by NMR restrained docking.
    ElAntak L; Morelli X; Bornet O; Hatchikian C; Czjzek M; Dolla A; Guerlesquin F
    FEBS Lett; 2003 Jul; 548(1-3):1-4. PubMed ID: 12885397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774:primary sequence determination, crystallographic refinement at 1.8 and modelling studies of its interaction with the tetrahaem cytochrome c3.
    Matias PM; Saraiva LM; Soares CM; Coelho AV; LeGall J; Carrondo MA
    J Biol Inorg Chem; 1999 Aug; 4(4):478-94. PubMed ID: 10555582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies.
    Palma PN; Moura I; LeGall J; Van Beeumen J; Wampler JE; Moura JJ
    Biochemistry; 1994 May; 33(21):6394-407. PubMed ID: 8204572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and redox properties of high molecular mass cytochrome c3 (Hmc) isolated from Desulfovibrio vulgaris Miyazaki.
    Ogata M; Kiuchi N; Yagi T
    Biochimie; 1993; 75(11):977-83. PubMed ID: 8123705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfate respiration in Desulfovibrio vulgaris Hildenborough. Structure of the 16-heme cytochrome c HmcA AT 2.5-A resolution and a view of its role in transmembrane electron transfer.
    Matias PM; Coelho AV; Valente FM; Plácido D; LeGall J; Xavier AV; Pereira IA; Carrondo MA
    J Biol Chem; 2002 Dec; 277(49):47907-16. PubMed ID: 12356749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of amino acid substitution on three-dimensional structure: an X-ray analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 2 A resolution.
    Morimoto Y; Tani T; Okumura H; Higuchi Y; Yasuoka N
    J Biochem; 1991 Oct; 110(4):532-40. PubMed ID: 1663945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction and electron transfer between the high molecular weight cytochrome and cytochrome c3 from Desulfovibrio vulgaris Hildenborough: kinetic, microcalorimetric, EPR and electrochemical studies.
    Guiral M; Leroy G; Bianco P; Gallice P; Guigliarelli B; Bruschi M; Nitschke W; Giudici-Orticoni MT
    Biochim Biophys Acta; 2005 May; 1723(1-3):45-54. PubMed ID: 15780995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfacial properties of the polyheme cytochrome c3 superfamily from Desulfovibrio.
    Florens L; Ivanova M; Dolla A; Czjzek M; Haser R; Verger R; Bruschi M
    Biochemistry; 1995 Sep; 34(36):11327-34. PubMed ID: 7547860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies.
    Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P
    Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial sequences of high-molecular-weight cytochrome c isolated from Desulfovibrio vulgaris Miyazaki.
    Tasaka C; Ogata M; Yagi T; Tsugita A
    Protein Seq Data Anal; 1991 Jul; 4(1):25-7. PubMed ID: 1656429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction.
    Kazanskaya I; Lexa D; Bruschi M; Chottard G
    Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of a high molecular weight cytochrome from the sulfate reducing bacterium Desulfovibrio gigas.
    Chen L; Pereira MM; Teixeira M; Xavier AV; Le Gall J
    FEBS Lett; 1994 Jun; 347(2-3):295-9. PubMed ID: 8034021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assignment of the redox potentials to the four haems in Desulfovibrio vulgaris cytochrome c3 by 2D-NMR.
    Salgueiro CA; Turner DL; Santos H; LeGall J; Xavier AV
    FEBS Lett; 1992 Dec; 314(2):155-8. PubMed ID: 1333991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drastic influence of a single heme axial ligand replacement on the thermostability of cytochrome c3.
    Dolla A; Florens L; Bruschi M; Dudich IV; Makarov AA
    Biochem Biophys Res Commun; 1995 Jun; 211(3):742-7. PubMed ID: 7598701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactivity of [Fe] and [Ni-Fe-Se] hydrogenases with their oxido-reduction partner: the tetraheme cytochrome c3.
    Bianco P; Haladjian J; Bruschi M; Guerlesquin F
    Biochem Biophys Res Commun; 1992 Dec; 189(2):633-9. PubMed ID: 1335243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino-acid sequence of the cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway and a comparison with those of the other polyhemic cytochromes from Desulfovibrio.
    Bruschi M; Leroy G; Guerlesquin F; Bonicel J
    Biochim Biophys Acta; 1994 Mar; 1205(1):123-31. PubMed ID: 8142476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the Tyr64 substitution on the stability of cytochrome c553, a low oxidoreduction-potential cytochrome from Desulfovibrio vulgaris Hildenborough.
    Blanchard L; Dolla A; Bersch B; Forest E; Bianco P; Wall J; Marion D; Guerlesquin F
    Eur J Biochem; 1994 Dec; 226(2):423-32. PubMed ID: 8001560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.