BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1194895)

  • 1. A plasmid involved in chloramphenicol production in Streptomyces venezuelae: evidence from genetic mapping.
    Akagawa H; Okanishi M; Umezawa H
    J Gen Microbiol; 1975 Oct; 90(2):336-46. PubMed ID: 1194895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetics and biochemical studies of chloramphenicol-nonproducing mutants of Streptomyces venezuelae carrying plasmid.
    Akagawa H; Okanishi M; Umezawa H
    J Antibiot (Tokyo); 1979 Jun; 32(6):610-20. PubMed ID: 468736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugational fertility and location of chloramphenicol biosynthesis genes on the chromosomal linkage map of Streptomyces venezuelae.
    Doull JL; Vats S; Chaliciopoulos M; Stuttard C; Wong K; Vining LC
    J Gen Microbiol; 1986 May; 132(5):1327-38. PubMed ID: 3464692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic recombination in a chloramphenicol-producing strain of Streptomyces species 3022a.
    Francis MM; Cella R; Vining LC
    Can J Microbiol; 1975 Aug; 21(8):1151-9. PubMed ID: 1164694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of the actinomycin-producing determinants (plasmid) in Streptomyces parvulus using the protoplast fusion technique.
    Ochi K; Katz E
    Can J Microbiol; 1980 Dec; 26(12):1460-4. PubMed ID: 6165448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a chromosomal location of the genes coding for chloramphenicol production in Streptomyces venezuelae.
    Ahmed ZU; Vining LC
    J Bacteriol; 1983 Apr; 154(1):239-44. PubMed ID: 6300034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome transfer in Proteus mirabilis mediated by hybrid plasmid.
    Coetzee JN
    J Gen Microbiol; 1975 Jan; 86(1):133-46. PubMed ID: 1089751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of chloramphenicol production in Streptomyces venezuelae ATCC 10712 by overexpression of the aroB and aroK genes catalysing steps in the shikimate pathway.
    Vitayakritsirikul V; Jaemsaeng R; Lohmaneeratana K; Thanapipatsiri A; Daduang R; Chuawong P; Thamchaipenet A
    Antonie Van Leeuwenhoek; 2016 Mar; 109(3):379-88. PubMed ID: 26715388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible plasmid involvement in turimycin production in Streptomyces hygroscopicus.
    Zippel M; Neigenfind M; Noack D
    Mol Gen Genet; 1983; 192(3):471-6. PubMed ID: 6581377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and ultrastructure of Streptomyces venezuelae during chloramphenicol production.
    Bewick MW; Williams ST; Veltkamp C
    Microbios; 1976; 16(65-66):191-9. PubMed ID: 1028905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plasmid of Streptomyces coelicolor carrying a chromosomal locus and its inter-specific transfer.
    Hopwood DA; Wright HM
    J Gen Microbiol; 1973 Dec; 79(2):331-42. PubMed ID: 4772093
    [No Abstract]   [Full Text] [Related]  

  • 12. Chloramphenicol acetylransferase-independent chloramphenicol resistance in Streptomyces coelicolor A3(2).
    Freeman RF; Bibb MJ; Hopwood DA
    J Gen Microbiol; 1977 Feb; 98(2):453-65. PubMed ID: 856941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transductional analysis of chloramphenicol biosynthesis genes in Streptomyces venezuelae.
    Vats S; Stuttard C; Vining LC
    J Bacteriol; 1987 Aug; 169(8):3809-13. PubMed ID: 3475271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2).
    Kirby R; Hopwood DA
    J Gen Microbiol; 1977 Jan; 98(1):239-52. PubMed ID: 833570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of chloramphenicol production in strains of Streptomyces species 3022alpha treated with acriflavine and ethidium bromide.
    Michelson AM; Vining LC
    Can J Microbiol; 1978 Jun; 24(6):662-9. PubMed ID: 667733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic circularity of the Proteus mirabilis linkage map.
    Coetzee JN
    J Gen Microbiol; 1979 Jan; 110(1):171-6. PubMed ID: 372488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster.
    Rudd BA; Hopwood DA
    J Gen Microbiol; 1980 Aug; 119(2):333-40. PubMed ID: 7229612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloramphenicol resistance in Streptomyces: cloning and characterization of a chloramphenicol hydrolase gene from Streptomyces venezuelae.
    Mosher RH; Ranade NP; Schrempf H; Vining LC
    J Gen Microbiol; 1990 Feb; 136(2):293-301. PubMed ID: 2324705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in
    Kim W; Lee N; Hwang S; Lee Y; Kim J; Cho S; Palsson B; Cho BK
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32516997
    [No Abstract]   [Full Text] [Related]  

  • 20. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66.
    Hopwood DA; Kieser T; Wright HM; Bibb MJ
    J Gen Microbiol; 1983 Jul; 129(7):2257-69. PubMed ID: 6631413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.