These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 11949682)
21. Sympathetic cardiac influence and arterial blood pressure instability. Formes KJ; Wray DW; O-Yurvati AH; Weiss MS; Shi X Auton Neurosci; 2005 Mar; 118(1-2):116-24. PubMed ID: 15795185 [TBL] [Abstract][Full Text] [Related]
22. Heart rate variability during centrifuge (+Gz) and lower body negative pressure (LBNP) in pilot candidates. Zuzewicz K; Kempa G; Biernat B; Kwarecki K J Gravit Physiol; 1996 Sep; 3(2):101-2. PubMed ID: 11540261 [TBL] [Abstract][Full Text] [Related]
23. Changes in superficial blood distribution in thigh muscle during LBNP assessed by NIRS. Hachiya T; Blaber AP; Saito M Aviat Space Environ Med; 2004 Feb; 75(2):118-22. PubMed ID: 14960046 [TBL] [Abstract][Full Text] [Related]
24. Physiological response of pilots to the LBNP-, flight-, and centrifuge load. Dosel P; Hanousek J; Cmiral J; Petricek J J Gravit Physiol; 1998 Jul; 5(1):P41-2. PubMed ID: 11542358 [TBL] [Abstract][Full Text] [Related]
25. Effect of 6-week endurance training on hemodynamic and neurohormonal responses to lower body negative pressure (LBNP) in healthy young men. Nazar K; Gasiorowska A; Mikulski T; Cybulski G; Niewiadomski W; Smorawiński J; Krzemiński K; Ziemba AW; Dorsz A; Kaciuba-Uściłko H J Physiol Pharmacol; 2006 Jun; 57(2):177-88. PubMed ID: 16845224 [TBL] [Abstract][Full Text] [Related]
26. Vasomotor responses to decreased venous return: effects of cardiac deafferentation in humans. Weisbrod CJ; Arnolda LF; McKitrick DJ; O'Driscoll G; Potter K; Green DJ J Physiol; 2004 Nov; 560(Pt 3):919-27. PubMed ID: 15331679 [TBL] [Abstract][Full Text] [Related]
27. Near-infrared spectroscopy provides an index of blood flow and vasoconstriction in calf skeletal muscle during lower body negative pressure. Hachiya T; Blaber AP; Saito M Acta Physiol (Oxf); 2008 Jun; 193(2):117-27. PubMed ID: 18162057 [TBL] [Abstract][Full Text] [Related]
28. [Comparative evaluation of several methods preventing orthostatic disorders during simulation of the end-of-space-mission factors]. Baranov VM; Demin EP; Kotov AN; Kolesnikov VI; Mikhaĭlov VM; Ushakov BB; Tikhonov MA Aviakosm Ekolog Med; 2003; 37(4):17-23. PubMed ID: 14503183 [TBL] [Abstract][Full Text] [Related]
29. Relationship between slow-wave EEG bursts and heart rate changes in preterm infants. Pfurtscheller K; Müller-Putz GR; Urlesberger B; Müller W; Pfurtscheller G Neurosci Lett; 2005 Sep; 385(2):126-30. PubMed ID: 15949895 [TBL] [Abstract][Full Text] [Related]
30. Orthostatic challenge does not alter skin sympathetic nerve activity in heat-stressed humans. Cui J; Wilson TE; Crandall CG Auton Neurosci; 2004 Nov; 116(1-2):54-61. PubMed ID: 15556838 [TBL] [Abstract][Full Text] [Related]
31. Cardiovascular and neurohormonal responses to lower body negative pressure (LBNP): effect of training and 3 day bed rest. Gasiorowska A; Mikulski T; Smorawiński J; Kaciuba-Uściłko H; Cybulski G; Ziemba AW; Krzemiński K; Niewiadomski W; Nazar K J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():85-100. PubMed ID: 17242493 [TBL] [Abstract][Full Text] [Related]
32. Biophysics of cardiopulmonary resuscitation with periodic z-axis acceleration or abdominal compression at aortic resonant frequencies. Babbs CF Resuscitation; 2006 Jun; 69(3):455-69. PubMed ID: 16563598 [TBL] [Abstract][Full Text] [Related]
33. Construction of a lower body negative pressure chamber. Esch BT; Scott JM; Warburton DE Adv Physiol Educ; 2007 Mar; 31(1):76-81. PubMed ID: 17327587 [TBL] [Abstract][Full Text] [Related]
34. Effect of lower body negative pressure on orthostatic tolerance and cardiac function during 21 days head-down tilt bed rest. Sun XQ; Yao YJ; Yang CB; Jiang CL; Jiang SZ; Liang WB J Gravit Physiol; 2003 Dec; 10(2):11-7. PubMed ID: 15838970 [TBL] [Abstract][Full Text] [Related]
35. Effects of depressed myocardial contractility induced by microgravity on cardiovascular response to orthostatic stress: a computer simulation. Hao WY; Bai J; Zhang WY; Wu XY; Zhang LF Comput Cardiol; 2001; 28():349-52. PubMed ID: 14640094 [TBL] [Abstract][Full Text] [Related]
36. Central command and the increase in middle cerebral artery blood flow velocity during static arm exercise in women. Sato K; Sadamoto T; Ueda-Sasahara C; Shibuya K; Shimizu-Okuyama S; Osada T; Kamo M; Saito M; Kagaya A Exp Physiol; 2009 Nov; 94(11):1132-8. PubMed ID: 19648482 [TBL] [Abstract][Full Text] [Related]
37. Nonneuronal origin of CO2-related DC EEG shifts: an in vivo study in the cat. Nita DA; Vanhatalo S; Lafortune FD; Voipio J; Kaila K; Amzica F J Neurophysiol; 2004 Aug; 92(2):1011-22. PubMed ID: 15056689 [TBL] [Abstract][Full Text] [Related]
38. The opticogravic nerve: eye-level anatomic relationships within the central nervous system. Whinnery JE; Shender BS Aviat Space Environ Med; 1993 Oct; 64(10):952-4. PubMed ID: 8240202 [TBL] [Abstract][Full Text] [Related]
39. Effects of gravity on the functions of the central nervous system. Adey WR Life Sci Space Res; 1964; 2():267-86. PubMed ID: 11881646 [TBL] [Abstract][Full Text] [Related]
40. The effect of respiratory activity on brain blood flow during exposure to +Gz acceleration. Walichnowski W; Kowalski W; Bulski W J Gravit Physiol; 1996 Sep; 3(2):103-4. PubMed ID: 11540262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]