These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11950059)

  • 1. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers.
    Espigares I; Elvira C; Mano JF; Vázquez B; San RJ; Reis RL
    Biomaterials; 2002 Apr; 23(8):1883-95. PubMed ID: 11950059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: properties and biocompatibility assessment.
    Lopes PP; Garcia MP; Fernandes MH; Fernandes MH
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1289-99. PubMed ID: 23827574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements.
    Boesel LF; Cachinho SC; Fernandes MH; Reis RL
    Acta Biomater; 2007 Mar; 3(2):175-82. PubMed ID: 17166784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the formulation and mechanical properties of starch based partially degradable bone cements.
    Boesel LF; Mano JF; Reis RL
    J Mater Sci Mater Med; 2004 Jan; 15(1):73-83. PubMed ID: 15338594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties.
    Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Kitamura Y; Kokubo T; Nakamura T
    J Biomed Mater Res; 2000 Aug; 51(2):258-72. PubMed ID: 10825226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.
    Verné E; Bruno M; Miola M; Maina G; Bianco C; Cochis A; Rimondini L
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():95-103. PubMed ID: 26042695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow characteristics of curing polymethyl methacrylate bone cement.
    Dunne NJ; Orr JF
    Proc Inst Mech Eng H; 1998; 212(3):199-207. PubMed ID: 9695639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of new acrylic bone cements prepared with oleic acid derivatives.
    Vázquez B; Deb S; Bonfield W; Román JS
    J Biomed Mater Res; 2002; 63(2):88-97. PubMed ID: 11870640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact killing antimicrobial acrylic bone cements: preparation and characterization.
    Punyani S; Deb S; Singh H
    J Biomater Sci Polym Ed; 2007; 18(2):131-45. PubMed ID: 17323849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved fatigue life of acrylic bone cements reinforced with zirconia fibers.
    Kane RJ; Yue W; Mason JJ; Roeder RK
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):504-11. PubMed ID: 20696415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New bioactive glass-ceramic: synthesis and application in PMMA bone cement composites.
    Abd Samad H; Jaafar M; Othman R; Kawashita M; Abdul Razak NH
    Biomed Mater Eng; 2011; 21(4):247-58. PubMed ID: 22182792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The behavior of novel hydrophilic composite bone cements in simulated body fluids.
    Boesel LF; Fernandes MH; Reis RL
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):368-77. PubMed ID: 15264321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate.
    Pascual B; Gurruchaga M; Ginebra MP; Gil FJ; Planell JA; Vázquez B; San Román J; Goñi I
    Biomaterials; 1999 Mar; 20(5):453-63. PubMed ID: 10204988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable self-curing bioactive acrylic-glass composites charged with specific anti-inflammatory/analgesic agent.
    Méndez JA; Fernández M; González-Corchón A; Salvado M; Collía F; de Pedro JA; Levenfeld BL; López-Bravo A; Vázquez B; San Román J
    Biomaterials; 2004 May; 25(12):2381-92. PubMed ID: 14741603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability.
    Gomes FO; Pires RA; Reis RL
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1361-70. PubMed ID: 23827583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent.
    Hernández L; Fernández M; Collía F; Gurruchaga M; Goñi I
    Biomaterials; 2006 Jan; 27(1):100-7. PubMed ID: 16009418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of water on the mechanical properties of soluble and insoluble ceramic cements.
    Koh I; López A; Pinar AB; Helgason B; Ferguson SJ
    J Mech Behav Biomed Mater; 2015 Nov; 51():50-60. PubMed ID: 26210548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate).
    Deb S; Vazquez B; Bonfield W
    J Biomed Mater Res; 1997 Dec; 37(4):465-73. PubMed ID: 9407294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone.
    Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T
    J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.