These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11950567)

  • 1. Engineering salt tolerance in plants.
    Apse MP; Blumwald E
    Curr Opin Biotechnol; 2002 Apr; 13(2):146-50. PubMed ID: 11950567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering salt tolerance in plants.
    Blumwald E
    Biotechnol Genet Eng Rev; 2003; 20():261-75. PubMed ID: 14997855
    [No Abstract]   [Full Text] [Related]  

  • 3. Improving iron, zinc and vitamin A nutrition through plant biotechnology.
    Zimmermann MB; Hurrell RF
    Curr Opin Biotechnol; 2002 Apr; 13(2):142-5. PubMed ID: 11950566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant salt-tolerance mechanisms.
    Deinlein U; Stephan AB; Horie T; Luo W; Xu G; Schroeder JI
    Trends Plant Sci; 2014 Jun; 19(6):371-9. PubMed ID: 24630845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically modified food crops: current concerns and solutions for next generation crops.
    Daniell H
    Biotechnol Genet Eng Rev; 2000; 17():327-52. PubMed ID: 11255672
    [No Abstract]   [Full Text] [Related]  

  • 6. Phytochemicals in plants: genomics-assisted plant improvement for nutritional and health benefits.
    Grusak MA
    Curr Opin Biotechnol; 2002 Oct; 13(5):508-11. PubMed ID: 12459345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of osmoprotectants to elucidate the mechanism(s) of salt stress tolerance in crop plants.
    Omari Alzahrani F
    Planta; 2021 Jan; 253(1):24. PubMed ID: 33403449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress.
    Jacobs A; Ford K; Kretschmer J; Tester M
    Plant Biotechnol J; 2011 Oct; 9(8):838-47. PubMed ID: 21338466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a biophysical understanding of the salt stress response of individual plant cells.
    Foster KJ; Miklavcic SJ
    J Theor Biol; 2015 Nov; 385():130-42. PubMed ID: 26362103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonizing phytate.
    Shamsuddin AM
    Nat Biotechnol; 2008 May; 26(5):496-7; author reply 497-8. PubMed ID: 18464772
    [No Abstract]   [Full Text] [Related]  

  • 11. The ABCs of low-phytate crops.
    Raboy V
    Nat Biotechnol; 2007 Aug; 25(8):874-5. PubMed ID: 17687363
    [No Abstract]   [Full Text] [Related]  

  • 12. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements.
    Satake H; Ono E; Murata J
    J Agric Food Chem; 2013 Dec; 61(48):11721-9. PubMed ID: 23718735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana.
    Shi H; Lee BH; Wu SJ; Zhu JK
    Nat Biotechnol; 2003 Jan; 21(1):81-5. PubMed ID: 12469134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison.
    Ashraf M; Akram NA
    Biotechnol Adv; 2009; 27(6):744-752. PubMed ID: 19500659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.
    Yang Y; Tang RJ; Jiang CM; Li B; Kang T; Liu H; Zhao N; Ma XJ; Yang L; Chen SL; Zhang HX
    Plant Biotechnol J; 2015 Sep; 13(7):962-73. PubMed ID: 25641517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis and crop improvement (a review).
    Dunwell JM; Moya-León MA; Herrera R
    Biol Res; 2001; 34(3-4):153-64. PubMed ID: 11715854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.
    del Martínez-Ballesta MC; Silva C; López-Berenguer C; Cabañero FJ; Carvajal M
    Plant Biol (Stuttg); 2006 Sep; 8(5):535-46. PubMed ID: 16865658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.
    Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H
    Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.
    Pandey S; Patel MK; Mishra A; Jha B
    PLoS One; 2016; 11(7):e0159349. PubMed ID: 27411057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt stress signals shape the plant root.
    Galvan-Ampudia CS; Testerink C
    Curr Opin Plant Biol; 2011 Jun; 14(3):296-302. PubMed ID: 21511515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.