These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11950597)

  • 1. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro.
    Clark P; Dunn GA; Knibbs A; Peckham M
    Int J Biochem Cell Biol; 2002 Jul; 34(7):816-25. PubMed ID: 11950597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normal myoblast fusion requires myoferlin.
    Doherty KR; Cave A; Davis DB; Delmonte AJ; Posey A; Earley JU; Hadhazy M; McNally EM
    Development; 2005 Dec; 132(24):5565-75. PubMed ID: 16280346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.
    Wang PY; Yu HT; Tsai WB
    Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential response of fetal and neonatal myoblasts to topographical guidance cues in vitro.
    Evans DJ; Britland S; Wigmore PM
    Dev Genes Evol; 1999 Jul; 209(7):438-42. PubMed ID: 10370128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential adhesion to and survival on patterned laminin organizes myogenesis in vitro.
    Clark P; Coles D; Peckham M
    Exp Cell Res; 1997 Feb; 230(2):275-83. PubMed ID: 9024786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of heterokaryons between skeletal myoblasts and somatic cells formed by fusion with HVJ (Sendai virus); effects on myogenic differentiation.
    Hirayama E; Udaka Y; Kawai T; Kim J
    Cell Struct Funct; 2001 Feb; 26(1):37-47. PubMed ID: 11345502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibodies to 100- and 60-kDa surface proteins inhibit substratum attachment and differentiation of rodent skeletal myoblasts.
    Engel L; White JM
    Dev Biol; 1990 Jul; 140(1):196-208. PubMed ID: 2358118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive deformation and damage of muscle cell subpopulations in a model system.
    Bouten CV; Knight MM; Lee DA; Bade DL
    Ann Biomed Eng; 2001 Feb; 29(2):153-63. PubMed ID: 11284670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials.
    Palamà IE; Coluccia AM; Gigli G; Riehle M
    Integr Biol (Camb); 2012 Oct; 4(10):1299-309. PubMed ID: 22899167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous xenogenic cell fusion of murine and chick skeletal muscle myoblasts.
    Takaya T; Nihashi Y; Kojima S; Ono T; Kagami H
    Anim Sci J; 2017 Nov; 88(11):1880-1885. PubMed ID: 28782148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro.
    Connolly JA; Kiosses BW; Kalnins VI
    Eur J Cell Biol; 1986 Jan; 39(2):341-5. PubMed ID: 3514220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane fusion in muscle development and repair.
    Demonbreun AR; Biersmith BH; McNally EM
    Semin Cell Dev Biol; 2015 Sep; 45():48-56. PubMed ID: 26537430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends.
    Zhang M; McLennan IS
    Dev Dyn; 1995 Oct; 204(2):168-77. PubMed ID: 8589440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis.
    Andrés V; Walsh K
    J Cell Biol; 1996 Feb; 132(4):657-66. PubMed ID: 8647896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic distribution of an antigen involved in the differentiation of avian myoblasts: II. Possible association of beta1 integrin with myofibril organization.
    Hirayama E; Inoue N; Kamata M; Ama M; Kim J
    Cell Motil Cytoskeleton; 2000 Jan; 45(1):27-41. PubMed ID: 10618164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth.
    Horsley V; Jansen KM; Mills ST; Pavlath GK
    Cell; 2003 May; 113(4):483-94. PubMed ID: 12757709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myotube driven myogenic recruitment of cells during in vitro myogenesis.
    Breton M; Li ZL; Paulin D; Harris JA; Rieger F; Pinçon-Raymond M; Garcia L
    Dev Dyn; 1995 Feb; 202(2):126-36. PubMed ID: 7734731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol depletion by methyl-beta-cyclodextrin enhances myoblast fusion and induces the formation of myotubes with disorganized nuclei.
    Mermelstein CS; Portilho DM; Medeiros RB; Matos AR; Einicker-Lamas M; Tortelote GG; Vieyra A; Costa ML
    Cell Tissue Res; 2005 Feb; 319(2):289-97. PubMed ID: 15549398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion.
    Gogos JA; Thompson R; Lowry W; Sloane BF; Weintraub H; Horwitz M
    J Cell Biol; 1996 Aug; 134(4):837-47. PubMed ID: 8769410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.