These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11950612)

  • 1. Cluster roots--an underground adaptation for survival in extreme environments.
    Neumann G; Martinoia E
    Trends Plant Sci; 2002 Apr; 7(4):162-7. PubMed ID: 11950612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil nitrogen, and not phosphorus, promotes cluster-root formation in a South American Proteaceae, Embothrium coccineum.
    Piper FI; Baeza G; Zúñiga-Feest A; Fajardo A
    Am J Bot; 2013 Dec; 100(12):2328-38. PubMed ID: 24249789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in the research of external Al detoxification in higher plants: a minireview.
    Ma JF; Furukawa J
    J Inorg Biochem; 2003 Sep; 97(1):46-51. PubMed ID: 14507459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.
    Montiel-Rozas MM; Madejón E; Madejón P
    Environ Pollut; 2016 Sep; 216():273-281. PubMed ID: 27267743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential for phosphorus benefits through root placement in the rhizosphere of phosphorus-mobilising neighbours.
    Teste FP; Dixon KW; Lambers H; Zhou J; Veneklaas EJ
    Oecologia; 2020 Aug; 193(4):843-855. PubMed ID: 32816111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems.
    Lambers H; Bishop JG; Hopper SD; Laliberté E; Zúñiga-Feest A
    Ann Bot; 2012 Jul; 110(2):329-48. PubMed ID: 22700940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status.
    Massonneau A; Langlade N; Léon S; Smutny J; Vogt E; Neumann G; Martinoia E
    Planta; 2001 Aug; 213(4):534-42. PubMed ID: 11556785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.
    Mohammad MJ; Pan WL; Kennedy AC
    Mycorrhiza; 2005 Jun; 15(4):259-66. PubMed ID: 15503187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [In situ dynamics of phosphorus in the rhizosphere solution and organic acids exudation of two aquatic plants].
    Wang ZY; Wen SF; Luo XX; Li AF; Xing BS; Li FM
    Huan Jing Ke Xue; 2009 Aug; 30(8):2248-52. PubMed ID: 19799282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant adaptations to severely phosphorus-impoverished soils.
    Lambers H; Martinoia E; Renton M
    Curr Opin Plant Biol; 2015 Jun; 25():23-31. PubMed ID: 25912783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas.
    Genney DR; Alexander IJ; Hartley SE
    J Exp Bot; 2000 Jun; 51(347):1117-25. PubMed ID: 10948239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency.
    Gao X; Zhang F; Hoffland E
    J Environ Qual; 2009; 38(6):2315-21. PubMed ID: 19875787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition.
    Ryan MH; Tibbett M; Edmonds-Tibbett T; Suriyagoda LD; Lambers H; Cawthray GR; Pang J
    Plant Cell Environ; 2012 Dec; 35(12):2170-80. PubMed ID: 22632405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.
    Rees F; Sterckeman T; Morel JL
    Chemosphere; 2016 Jan; 142():48-55. PubMed ID: 25912633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multiple facets of root iron reduction.
    Grillet L; Schmidt W
    J Exp Bot; 2017 Nov; 68(18):5021-5027. PubMed ID: 29036459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and function of root exudates.
    Badri DV; Vivanco JM
    Plant Cell Environ; 2009 Jun; 32(6):666-81. PubMed ID: 19143988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.
    Bowsher AW; Ali R; Harding SA; Tsai CJ; Donovan LA
    PLoS One; 2016; 11(1):e0148280. PubMed ID: 26824236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions?
    Zhu Y; Yan F; Zörb C; Schubert S
    Plant Cell Physiol; 2005 Jun; 46(6):892-901. PubMed ID: 15821025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence.
    Raven JA; Lambers H; Smith SE; Westoby M
    New Phytol; 2018 Mar; 217(4):1420-1427. PubMed ID: 29292829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.