These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 11950971)
1. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Martínez-Hernández A; López-Ochoa L; Argüello-Astorga G; Herrera-Estrella L Plant Physiol; 2002 Apr; 128(4):1223-33. PubMed ID: 11950971 [TBL] [Abstract][Full Text] [Related]
2. Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis. Yadav V; Kundu S; Chattopadhyay D; Negi P; Wei N; Deng XW; Chattopadhyay S Plant J; 2002 Sep; 31(6):741-53. PubMed ID: 12220265 [TBL] [Abstract][Full Text] [Related]
3. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Guo H; Mockler T; Duong H; Lin C Science; 2001 Jan; 291(5503):487-90. PubMed ID: 11161203 [TBL] [Abstract][Full Text] [Related]
4. Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in Arabidopsis. Harari-Steinberg O; Ohad I; Chamovitz DA Plant Physiol; 2001 Nov; 127(3):986-97. PubMed ID: 11706180 [TBL] [Abstract][Full Text] [Related]
5. Structural relationships between diverse cis-acting elements are critical for the functional properties of a rbcS minimal light regulatory unit. López-Ochoa L; Acevedo-Hernández G; Martínez-Hernández A; Argüello-Astorga G; Herrera-Estrella L J Exp Bot; 2007; 58(15-16):4397-406. PubMed ID: 18182441 [TBL] [Abstract][Full Text] [Related]
6. Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis. Chattopadhyay S; Puente P; Deng XW; Wei N Plant J; 1998 Jul; 15(1):69-77. PubMed ID: 9744096 [TBL] [Abstract][Full Text] [Related]
7. Cryptochrome 1, cryptochrome 2, and phytochrome a co-activate the chloroplast psbD blue light-responsive promoter. Thum KE; Kim M; Christopher DA; Mullet JE Plant Cell; 2001 Dec; 13(12):2747-60. PubMed ID: 11752385 [TBL] [Abstract][Full Text] [Related]
8. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Wang H; Ma LG; Li JM; Zhao HY; Deng XW Science; 2001 Oct; 294(5540):154-8. PubMed ID: 11509693 [TBL] [Abstract][Full Text] [Related]
9. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Tóth R; Kevei E; Hall A; Millar AJ; Nagy F; Kozma-Bognár L Plant Physiol; 2001 Dec; 127(4):1607-16. PubMed ID: 11743105 [TBL] [Abstract][Full Text] [Related]
10. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Shalitin D; Yang H; Mockler TC; Maymon M; Guo H; Whitelam GC; Lin C Nature; 2002 Jun; 417(6890):763-7. PubMed ID: 12066190 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Chattopadhyay S; Ang LH; Puente P; Deng XW; Wei N Plant Cell; 1998 May; 10(5):673-83. PubMed ID: 9596629 [TBL] [Abstract][Full Text] [Related]
12. shl, a New set of Arabidopsis mutants with exaggerated developmental responses to available red, far-red, and blue light. Pepper AE; Seong-Kim M; Hebst SM; Ivey KN; Kwak SJ; Broyles DE Plant Physiol; 2001 Sep; 127(1):295-304. PubMed ID: 11553757 [TBL] [Abstract][Full Text] [Related]
13. Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. Acevedo-Hernández GJ; León P; Herrera-Estrella LR Plant J; 2005 Aug; 43(4):506-19. PubMed ID: 16098105 [TBL] [Abstract][Full Text] [Related]
14. Plant sciences. A CONSTANS experience brought to light. Klejnot J; Lin C Science; 2004 Feb; 303(5660):965-6. PubMed ID: 14963316 [No Abstract] [Full Text] [Related]
15. Distinct leaf developmental and gene expression responses to light quantity depend on blue-photoreceptor or plastid-derived signals, and can occur in the absence of phototropins. López-Juez E; Bowyer JR; Sakai T Planta; 2007 Dec; 227(1):113-23. PubMed ID: 17701203 [TBL] [Abstract][Full Text] [Related]
16. Light induces phenylpropanoid metabolism in Arabidopsis roots. Hemm MR; Rider SD; Ogas J; Murry DJ; Chapple C Plant J; 2004 Jun; 38(5):765-78. PubMed ID: 15144378 [TBL] [Abstract][Full Text] [Related]
17. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Ahmad M; Grancher N; Heil M; Black RC; Giovani B; Galland P; Lardemer D Plant Physiol; 2002 Jun; 129(2):774-85. PubMed ID: 12068118 [TBL] [Abstract][Full Text] [Related]
18. Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Ruckle ME; DeMarco SM; Larkin RM Plant Cell; 2007 Dec; 19(12):3944-60. PubMed ID: 18065688 [TBL] [Abstract][Full Text] [Related]
19. Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Chen D; Xu G; Tang W; Jing Y; Ji Q; Fei Z; Lin R Plant Cell; 2013 May; 25(5):1657-73. PubMed ID: 23645630 [TBL] [Abstract][Full Text] [Related]
20. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Usami T; Mochizuki N; Kondo M; Nishimura M; Nagatani A Plant Cell Physiol; 2004 Dec; 45(12):1798-808. PubMed ID: 15653798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]