These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 11951190)
1. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices. Edwards RB; Lu Y; Rodriguez E; Markel MD Arthroscopy; 2002 Apr; 18(4):339-46. PubMed ID: 11951190 [TBL] [Abstract][Full Text] [Related]
2. Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature. Lu Y; Bogdanske J; Lopez M; Cole BJ; Markel MD Arthroscopy; 2005 May; 21(5):592-6. PubMed ID: 15891727 [TBL] [Abstract][Full Text] [Related]
3. RFE based chondroplasty in wrist arthroscopy indicates high risk for chrondocytes especially for the bipolar application. Huber M; Eder C; Loibl M; Berner A; Zellner J; Kujat R; Nerlich M; Gehmert S BMC Musculoskelet Disord; 2015 Jan; 16(1):6. PubMed ID: 25636383 [TBL] [Abstract][Full Text] [Related]
4. Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy. Huang Y; Zhang Y; Ding X; Liu S; Sun T Chin Med J (Engl); 2014; 127(22):3881-6. PubMed ID: 25421185 [TBL] [Abstract][Full Text] [Related]
5. The effects of radiofrequency energy probe speed and application force on chondrocyte viability. Lu Y; Meyer ML; Bogdanske JJ; Markel MD Vet Comp Orthop Traumatol; 2007; 20(1):34-7. PubMed ID: 17364094 [TBL] [Abstract][Full Text] [Related]
6. Thermal chondroplasty with bipolar and monopolar radiofrequency energy: effect of treatment time on chondrocyte death and surface contouring. Lu Y; Edwards RB; Nho S; Heiner JP; Cole BJ; Markel MD Arthroscopy; 2002 Sep; 18(7):779-88. PubMed ID: 12209437 [TBL] [Abstract][Full Text] [Related]
7. Thermal chondroplasty with radiofrequency energy. An in vitro comparison of bipolar and monopolar radiofrequency devices. Lu Y; Edwards RB; Cole BJ; Markel MD Am J Sports Med; 2001; 29(1):42-9. PubMed ID: 11206255 [TBL] [Abstract][Full Text] [Related]
8. In vivo study on the short-term effect of radiofrequency energy on chondromalacic patellar cartilage and its correlation with calcified cartilage pathology in an equine model. Uthamanthil RK; Edwards RB; Lu Y; Manley PA; Athanasiou KA; Markel MD J Orthop Res; 2006 Apr; 24(4):716-24. PubMed ID: 16514662 [TBL] [Abstract][Full Text] [Related]
9. Effect of radiofrequency energy on glenohumeral fluid temperature during shoulder arthroscopy. Good CR; Shindle MK; Griffith MH; Wanich T; Warren RF J Bone Joint Surg Am; 2009 Feb; 91(2):429-34. PubMed ID: 19181988 [TBL] [Abstract][Full Text] [Related]
10. Lavage solution temperature influences depth of chondrocyte death and surface contouring during thermal chondroplasty with temperature-controlled monopolar radiofrequency energy. Lu Y; Edwards RB; Nho S; Cole BJ; Markel MD Am J Sports Med; 2002; 30(5):667-73. PubMed ID: 12238999 [TBL] [Abstract][Full Text] [Related]
11. Temperature profile of radiofrequency probe application in wrist arthroscopy: monopolar versus bipolar. Huber M; Eder C; Mueller M; Kujat R; Roll C; Nerlich M; Prantl L; Gehmert S Arthroscopy; 2013 Apr; 29(4):645-52. PubMed ID: 23380231 [TBL] [Abstract][Full Text] [Related]
12. Comparison of radiofrequency treatment and mechanical debridement of fibrillated cartilage in an equine model. Edwards RB; Lu Y; Cole BJ; Muir P; Markel MD Vet Comp Orthop Traumatol; 2008; 21(1):41-8. PubMed ID: 18288343 [TBL] [Abstract][Full Text] [Related]
13. Ex vivo comparison between thyroid-dedicated bipolar and monopolar radiofrequency electrodes. Yoon RG; Baek JH; Chung SR; Choi YJ; Lee JH Int J Hyperthermia; 2018 Aug; 34(5):624-630. PubMed ID: 29402149 [TBL] [Abstract][Full Text] [Related]
14. The time-dependent effects of bipolar radiofrequency energy on bovine articular cartilage. Peng L; Li Y; Zhang K; Chen Q; Xiao L; Geng Y; Huang Y; Zhu W; Lu W; Zhang G; Deng Z; Wang D J Orthop Surg Res; 2020 Mar; 15(1):106. PubMed ID: 32164688 [TBL] [Abstract][Full Text] [Related]
15. Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury. Edwards RB; Lu Y; Uthamanthil RK; Bogdanske JJ; Muir P; Athanasiou KA; Markel MD Osteoarthritis Cartilage; 2007 Feb; 15(2):169-78. PubMed ID: 16905340 [TBL] [Abstract][Full Text] [Related]
16. Thermal chondroplasty of chondromalacic human cartilage. An ex vivo comparison of bipolar and monopolar radiofrequency devices. Edwards RB; Lu Y; Nho S; Cole BJ; Markel MD Am J Sports Med; 2002; 30(1):90-7. PubMed ID: 11799002 [TBL] [Abstract][Full Text] [Related]
17. Radiofrequency energy induced heating of bovine articular cartilage: comparison between temperature-controlled, monopolar, and bipolar systems. Shellock FG Knee Surg Sports Traumatol Arthrosc; 2001 Nov; 9(6):392-7. PubMed ID: 11734879 [TBL] [Abstract][Full Text] [Related]
18. Temperature in and around the scapholunate ligament during radiofrequency shrinkage: a cadaver study. Huber M; Loibl M; Eder C; Zellner J; Kujat R; Nerlich M; Gehmert S J Hand Surg Am; 2015 Feb; 40(2):259-65. PubMed ID: 25500298 [TBL] [Abstract][Full Text] [Related]
19. Radiofrequency-Based Chondroplasty Creates a Precise Area of Targeted Chondrocyte Death With Minimal Necrosis Outside the Target Zone: A Systematic Review. Jackson GR; Salazar LM; McCormick JR; Gopinatth V; Hodakowski A; Mowers CC; Dasari S; Fortier LM; Kaplan DJ; Khan ZA; Mameri ES; Knapik DM; Chahla J; Verma NN Arthrosc Sports Med Rehabil; 2023 Aug; 5(4):100754. PubMed ID: 37448756 [TBL] [Abstract][Full Text] [Related]
20. Effects of radiofrequency energy on human chondromalacic cartilage: an assessment of insulation material properties. Meyer ML; Lu Y; Markel MD IEEE Trans Biomed Eng; 2005 Apr; 52(4):702-10. PubMed ID: 15825872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]