These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11952179)

  • 21. Novel mercury control technology for solid waste incineration: sodium tetrasulfide (STS) as mercury capturing agent.
    Liu Y; Xie S; Li Y; Liu Y
    Environ Sci Technol; 2007 Mar; 41(5):1735-9. PubMed ID: 17396668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of sulfoaluminate cement and bottom ash in the solidification/stabilization of galvanic sludge.
    Luz CA; Rocha JC; Cheriaf M; Pera J
    J Hazard Mater; 2006 Aug; 136(3):837-45. PubMed ID: 16488079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solidification and stabilization of asbestos waste from an automobile brake manufacturing facility using cement.
    Chan YM; Agamuthu P; Mahalingam R
    J Hazard Mater; 2000 Oct; 77(1-3):209-26. PubMed ID: 10946129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of organics leaching from solidified/stabilized hazardous wastes using a powder reactivated carbon additive.
    Gong P; Bishop PL
    Environ Technol; 2003 Apr; 24(4):445-55. PubMed ID: 12755446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tung oil as an effective modifier for sulfur polymer cement and its performance in galvanic waste encapsulation.
    Banaszkiewicz K; Czechowski F
    Heliyon; 2020 May; 6(5):e03908. PubMed ID: 32405552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings.
    Lowry GV; Shaw S; Kim CS; Rytuba JJ; Brown GE
    Environ Sci Technol; 2004 Oct; 38(19):5101-11. PubMed ID: 15506205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concerns on liquid mercury and mercury-containing wastes: a review of the treatment technologies for the safe storage.
    Rodríguez O; Padilla I; Tayibi H; López-Delgado A
    J Environ Manage; 2012 Jun; 101():197-205. PubMed ID: 22446074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cement based solidification/stabilization of arsenic-contaminated mine tailings.
    Choi WH; Lee SR; Park JY
    Waste Manag; 2009 May; 29(5):1766-71. PubMed ID: 19118995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced elemental mercury removal from coal-fired flue gas by sulfur-chlorine compounds.
    Yan NQ; Qu Z; Chi Y; Qiao SH; Dod RL; Chang SG; Miller C
    Environ Sci Technol; 2009 Jul; 43(14):5410-5. PubMed ID: 19708374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization/solidification processes and the US EPA Toxicity Characteristic Leaching Procedure.
    Poon CS
    Waste Manag; 2003; 23(4):iii. PubMed ID: 12852419
    [No Abstract]   [Full Text] [Related]  

  • 32. Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics.
    Liu Z; Qian G; Zhou J; Li C; Xu Y; Qin Z
    J Hazard Mater; 2008 Aug; 157(1):146-53. PubMed ID: 18289781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon bed mercury emissions control for mixed waste treatment.
    Soelberg N; Enneking J
    J Air Waste Manag Assoc; 2010 Nov; 60(11):1341-52. PubMed ID: 21141428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of ferric sludge to immobilize leachable mercury in soils and concrete.
    Zhuang JM; Walsh T; Lam T; Boulter D
    Environ Technol; 2003 Nov; 24(11):1445-53. PubMed ID: 14733397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stabilization of mercury using waste ladle furnace slag.
    Sun DD; Zhang L; Lai D
    J Air Waste Manag Assoc; 2013 Dec; 63(12):1469-78. PubMed ID: 24558709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability of mercury on a novel mineral sulfide sorbent used for efficient mercury removal from coal combustion flue gas.
    Li H; Zhang M; Zhu L; Yang J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28583-28593. PubMed ID: 30091078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilization/solidification of an alkyd paint waste by carbonation of waste-lime based formulations.
    Arce R; Galán B; Coz A; Andrés A; Viguri JR
    J Hazard Mater; 2010 May; 177(1-3):428-36. PubMed ID: 20060213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercury speciation in fluorescent lamps by thermal release analysis.
    Raposo C; Windmöller CC; Durão WA
    Waste Manag; 2003; 23(10):879-86. PubMed ID: 14614922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Treatability of chromite ore processing waste by leaching.
    Unlü K; Haskök S
    Waste Manag Res; 2001 Jun; 19(3):217-28. PubMed ID: 11699856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of Vapor-Phase Mercury Uptake by Virgin and Sulfur-Impregnated Activated Carbons.
    Vidic RD; Chang MT; Thurnau RC
    J Air Waste Manag Assoc; 1998 Mar; 48(3):247-255. PubMed ID: 29091549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.