BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11953467)

  • 1. Amprenavir-resistant HIV-1 exhibits lopinavir cross-resistance and reduced replication capacity.
    Prado JG; Wrin T; Beauchaine J; Ruiz L; Petropoulos CJ; Frost SD; Clotet B; D'Aquila RT; Martinez-Picado J
    AIDS; 2002 May; 16(7):1009-17. PubMed ID: 11953467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro.
    Maguire MF; Guinea R; Griffin P; Macmanus S; Elston RC; Wolfram J; Richards N; Hanlon MH; Porter DJ; Wrin T; Parkin N; Tisdale M; Furfine E; Petropoulos C; Snowden BW; Kleim JP
    J Virol; 2002 Aug; 76(15):7398-406. PubMed ID: 12097552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotypic and phenotypic cross-resistance patterns to lopinavir and amprenavir in protease inhibitor-experienced patients with HIV viremia.
    Paulsen D; Liao Q; Fusco G; St Clair M; Shaefer M; Ross L
    AIDS Res Hum Retroviruses; 2002 Sep; 18(14):1011-9. PubMed ID: 12396453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRL-02031, a novel nonpeptidic protease inhibitor (PI) containing a stereochemically defined fused cyclopentanyltetrahydrofuran potent against multi-PI-resistant human immunodeficiency virus type 1 in vitro.
    Koh Y; Das D; Leschenko S; Nakata H; Ogata-Aoki H; Amano M; Nakayama M; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2009 Mar; 53(3):997-1006. PubMed ID: 18955518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of resistance to protease inhibitor amprenavir in human immunodeficiency virus type 1-infected patients: selection of four alternative viral protease genotypes and influence of viral susceptibility to coadministered reverse transcriptase nucleoside inhibitors.
    Maguire M; Shortino D; Klein A; Harris W; Manohitharajah V; Tisdale M; Elston R; Yeo J; Randall S; Xu F; Parker H; May J; Snowden W
    Antimicrob Agents Chemother; 2002 Mar; 46(3):731-8. PubMed ID: 11850255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients.
    Kempf DJ; Isaacson JD; King MS; Brun SC; Xu Y; Real K; Bernstein BM; Japour AJ; Sun E; Rode RA
    J Virol; 2001 Aug; 75(16):7462-9. PubMed ID: 11462018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nelfinavir-resistant, amprenavir-hypersusceptible strains of human immunodeficiency virus type 1 carrying an N88S mutation in protease have reduced infectivity, reduced replication capacity, and reduced fitness and process the Gag polyprotein precursor aberrantly.
    Resch W; Ziermann R; Parkin N; Gamarnik A; Swanstrom R
    J Virol; 2002 Sep; 76(17):8659-66. PubMed ID: 12163585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV protease mutations associated with amprenavir resistance during salvage therapy: importance of I54M.
    Murphy MD; Marousek GI; Chou S
    J Clin Virol; 2004 May; 30(1):62-7. PubMed ID: 15072756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor.
    Carrillo A; Stewart KD; Sham HL; Norbeck DW; Kohlbrenner WE; Leonard JM; Kempf DJ; Molla A
    J Virol; 1998 Sep; 72(9):7532-41. PubMed ID: 9696850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving lopinavir genotype algorithm through phenotype correlations: novel mutation patterns and amprenavir cross-resistance.
    Parkin NT; Chappey C; Petropoulos CJ
    AIDS; 2003 May; 17(7):955-61. PubMed ID: 12700444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of human immunodeficiency virus type-1 protease-resistant variants.
    Pazhanisamy S; Stuver CM; Cullinan AB; Margolin N; Rao BG; Livingston DJ
    J Biol Chem; 1996 Jul; 271(30):17979-85. PubMed ID: 8663409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of resistance in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects failing lopinavir- and ritonavir-based therapy: mutation patterns and baseline correlates.
    Mo H; King MS; King K; Molla A; Brun S; Kempf DJ
    J Virol; 2005 Mar; 79(6):3329-38. PubMed ID: 15731227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro selection and characterization of VX-478 resistant HIV-1 variants.
    Pazhanisamy S; Partaledis JA; Rao BG; Livingston DJ
    Adv Exp Med Biol; 1998; 436():75-83. PubMed ID: 9561202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of resistant HIV variants generated by in vitro passage with lopinavir/ritonavir.
    Mo H; Lu L; Dekhtyar T; Stewart KD; Sun E; Kempf DJ; Molla A
    Antiviral Res; 2003 Aug; 59(3):173-80. PubMed ID: 12927307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors.
    Aoki M; Venzon DJ; Koh Y; Aoki-Ogata H; Miyakawa T; Yoshimura K; Maeda K; Mitsuya H
    J Virol; 2009 Apr; 83(7):3059-68. PubMed ID: 19176623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance profiles observed in virological failures after 24 weeks of amprenavir/ritonavir containing regimen in protease inhibitor experienced patients.
    Marcelin AG; Affolabi D; Lamotte C; Mohand HA; Delaugerre C; Wirden M; Voujon D; Bossi P; Ktorza N; Bricaire F; Costagliola D; Katlama C; Peytavin G; Calvez V
    J Med Virol; 2004 Sep; 74(1):16-20. PubMed ID: 15258963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional correlation between a novel amino acid insertion at codon 19 in the protease of human immunodeficiency virus type 1 and polymorphism in the p1/p6 Gag cleavage site in drug resistance and replication fitness.
    Brann TW; Dewar RL; Jiang MK; Shah A; Nagashima K; Metcalf JA; Falloon J; Lane HC; Imamichi T
    J Virol; 2006 Jun; 80(12):6136-45. PubMed ID: 16731952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amprenavir or fosamprenavir plus ritonavir in HIV infection: pharmacology, efficacy and tolerability profile.
    Arvieux C; Tribut O
    Drugs; 2005; 65(5):633-59. PubMed ID: 15748098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir.
    Markland W; Rao BG; Parsons JD; Black J; Zuchowski L; Tisdale M; Tung R
    J Virol; 2000 Aug; 74(16):7636-41. PubMed ID: 10906218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.