These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 1195347)

  • 1. Voltage jump/capacitance relaxation studies of bilayer structure and dynamics. Studies on oxidized cholesterol membranes.
    Sargent DF
    J Membr Biol; 1975; 23(3-4):277-47. PubMed ID: 1195347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of adrenocorticotropin-(1-24)-tetracosapeptide with lipid bilayers.
    Hianik T; Sargent DF; Smriga M; Sikurová L; Nemcová P
    Gen Physiol Biophys; 1996 Jun; 15(3):239-50. PubMed ID: 9076506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [History and importance of electrically excitable artificial membranes].
    Monnier AM
    Rev Can Biol Exp; 1982 Mar; 41(1):47-63. PubMed ID: 7048441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of lipid bilayer membrane stability using precise measurements of specific capacitance.
    White SH
    Biophys J; 1970 Dec; 10(12):1127-48. PubMed ID: 5489777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and cholesterol composition-dependent behavior of 1-myristoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-phosphocholine in 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes.
    Troup GM; Wrenn SP
    Chem Phys Lipids; 2004 Sep; 131(2):167-82. PubMed ID: 15351269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating membrane properties: the effect of trehalose and cholesterol on a phospholipid bilayer.
    Doxastakis M; Sum AK; de Pablo JJ
    J Phys Chem B; 2005 Dec; 109(50):24173-81. PubMed ID: 16375409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Lipid bilayer with ion channels--a dipole with inductive properties].
    Grigor'ev PA; Kiselev EA
    Biofizika; 1984; 29(2):332-4. PubMed ID: 6722204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-induced reflectivity relaxation of bilayer lipid membranes: on changes of bilayer thickness.
    Berestovsky GN; Gyulkhandanyan MZ; Ivkov VG; Razhin VD
    J Membr Biol; 1978 Oct; 43(2-3):107-26. PubMed ID: 712812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of alamethicin-induced conductance by membrane composition.
    Latorre R; Donovan JJ
    Acta Physiol Scand Suppl; 1980; 481():37-45. PubMed ID: 6254328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics studies of the molecular structure and interactions of cholesterol superlattices and random domains in an unsaturated phosphatidylcholine bilayer membrane.
    Zhu Q; Cheng KH; Vaughn MW
    J Phys Chem B; 2007 Sep; 111(37):11021-31. PubMed ID: 17718554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes.
    Schoch P; Sargent DF; Schwyzer R
    J Membr Biol; 1979 Apr; 46(1):71-89. PubMed ID: 448730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural rearrangements induced by glycerol increase the permeability of bilayer lipid membranes for amphotericin].
    Rudenko SV
    Biofizika; 1986; 31(1):59-63. PubMed ID: 2420371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Conductivity of bilayer lipid membranes of phosphatidic acid at phase transitions, induced by temperature and pH].
    Antonov VF; Vasserman AN; Mol'nar AA; Kozhomkulov ET; Linke L
    Biofizika; 1982; 27(5):822-6. PubMed ID: 7138932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of physical mechanisms of insulin reception.
    Hianik T; Kavecanský J
    Czech Med; 1989; 12(2):101-16. PubMed ID: 2504559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of insulin on lipid bilayer viscoelasticity.
    Hianik T; Zórad S; Kavecanský J; Macho L
    Gen Physiol Biophys; 1987 Apr; 6(2):173-83. PubMed ID: 3308630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of cholesterol on voids in phospholipid membranes.
    Falck E; Patra M; Karttunen M; Hyvönen MT; Vattulainen I
    J Chem Phys; 2004 Dec; 121(24):12676-89. PubMed ID: 15606294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Generation of capacitance current harmonics during electrostriction of inhomogeneous bilayers].
    Pasechnik VI
    Biofizika; 2000; 45(6):1049-56. PubMed ID: 11155232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade and recovery of the acetylcholine receptor produced by a thienyl analog of phencyclidine: influence of voltage, temperature, frequency of stimulation and conditioning pulse duration.
    Aguayo LG; Albuquerque EX
    J Pharmacol Exp Ther; 1986 Oct; 239(1):25-31. PubMed ID: 3489836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.