These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11953564)

  • 21. Coded aperture nuclear scintigraphy: a novel small animal imaging technique.
    Schellingerhout D; Accorsi R; Mahmood U; Idoine J; Lanza RC; Weissleder R
    Mol Imaging; 2002 Oct; 1(4):344-53. PubMed ID: 12926230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved delineation of parathyroid lesions in patients with chronic renal failure using magnified pinhole imaging.
    Ali L; Loutfi I; Biswas G; Hadi N; Girgis T
    J Nucl Med Technol; 2011 Mar; 39(1):35-9. PubMed ID: 21321253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detectability of foci of radioiodine uptake in the thyroid bed and neck comparing pinhole with parallel-hole collimators.
    Kulkarni K; Van Nostrand D; Mete M; Burman K; Wartofsky L
    Nucl Med Commun; 2011 May; 32(5):369-74. PubMed ID: 21394048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size measurement of the thyroid gland on a magnified pinhole thyroid scan using an ultrasonic device measuring distance from the pinhole to the thyroid gland.
    Ahn BC; Ahn G; Kim DH; Kim KD; Jeong SY; Lee SW; Lee J
    Ann Nucl Med; 2015 Feb; 29(2):111-7. PubMed ID: 25318409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A collimator with a magnetic personality?
    Priest AN; Barber RW
    Nucl Med Commun; 2001 Nov; 22(11):1267-70. PubMed ID: 11606895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Development of a converging collimator for thyroid scintigraphy].
    Ogawa K; Hashimoto J; Kubo A; Hashimoto S; Suzuki K; Ruike T
    Kaku Igaku; 1990 Apr; 27(4):303-11. PubMed ID: 2376916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and implementation of a prototype head and neck phantom for the performance evaluation of gamma imaging systems.
    Alqahtani MS; Lees JE; Bugby SL; Samara-Ratna P; Ng AH; Perkins AC
    EJNMMI Phys; 2017 Dec; 4(1):19. PubMed ID: 28685477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gamma camera calibration and validation for quantitative SPECT imaging with (177)Lu.
    D'Arienzo M; Cazzato M; Cozzella ML; Cox M; D'Andrea M; Fazio A; Fenwick A; Iaccarino G; Johansson L; Strigari L; Ungania S; De Felice P
    Appl Radiat Isot; 2016 Jun; 112():156-64. PubMed ID: 27064195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of pinhole and high-resolution parallel-hole imaging for nodular thyroid disease.
    Ghanem MA; Elgazzar AH; Elsaid MM; Shehab F
    Clin Nucl Med; 2011 Sep; 36(9):770-1. PubMed ID: 21825846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calibration of surface contamination monitors for the detection of iodine incorporation in the thyroid gland.
    Bailat C; Buchillier T; Baechler S; Bochud F
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):505-9. PubMed ID: 21149292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scintigraphic estimation of thyroid volume and dose distribution at treatment with 131I.
    Olsen KJ
    Acta Radiol Oncol Radiat Phys Biol; 1978; 17(1):74-80. PubMed ID: 696403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the distribution of radioactive sources on deadtime loss in a single-crystal gamma camera.
    Inoue Y; Ohtake T; Oritate T; Nishikawa J; Yoshikawa K; Sasaki Y
    Radiat Med; 1998; 16(2):149-52. PubMed ID: 9650906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross calibration of
    Nakajima K; Okuda K; Yokoyama K; Yoneyama T; Tsuji S; Oda H; Yoshita M; Kubota K
    Ann Nucl Med; 2017 Oct; 31(8):605-615. PubMed ID: 28689357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correction of count losses due to deadtime on a DST-XLi (SmVi-GE) camera during dosimetric studies in patients injected with iodine-131.
    Delpon G; Ferrer L; Lisbona A; Bardiès M
    Phys Med Biol; 2002 Apr; 47(7):N79-90. PubMed ID: 11996067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thyroid uptake measurements with I-123: problems and pitfalls: concise communication.
    Chervu S; Chervu LR; Goodwin PN; Blaufox MD
    J Nucl Med; 1982 Aug; 23(8):667-70. PubMed ID: 7108611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Measurement of the Thyroid Uptake Function of Mouse by Cerenkov Luminescence Imaging.
    Ke CC; He ZM; Hsieh YJ; Huang CW; Li JJ; Hwu L; Chen YA; Yang BH; Chang CW; Huang WS; Liu RS
    Sci Rep; 2017 Jul; 7(1):5717. PubMed ID: 28720762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thyroid uptake of 125iodine after prostate permanent brachytherapy.
    Chen QS; Blair HF
    J Urol; 2004 Nov; 172(5 Pt 1):1827-9. PubMed ID: 15540731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mobile high-resolution gamma camera for therapeutic dose control during radionuclide therapy.
    Trigila C; Verdier MA; Pinot L; Bouvet F; Beaumont T; Broggio D; Desbrée A; Ménard L
    Phys Med Biol; 2022 Feb; 67(3):. PubMed ID: 35038686
    [No Abstract]   [Full Text] [Related]  

  • 39. The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound.
    Meller J; Becker W
    Eur J Nucl Med Mol Imaging; 2002 Aug; 29 Suppl 2():S425-38. PubMed ID: 12192542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thyroid uptake of radioactive iodine and scintigraphy in mice.
    Rocchi R; Kunavisarut T; Ladenson P; Caturegli P
    Thyroid; 2006 Jul; 16(7):705-6. PubMed ID: 16889498
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.