BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11954739)

  • 1. Measurement of environmental trace-metal levels with transplanted mussels and diffusive gradients in thin films (DGT): a comparison of techniques.
    Webb JA; Keough MJ
    Mar Pollut Bull; 2002 Mar; 44(3):222-9. PubMed ID: 11954739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques.
    Schintu M; Durante L; Maccioni A; Meloni P; Degetto S; Contu A
    Mar Pollut Bull; 2008; 57(6-12):832-7. PubMed ID: 18396298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue and cell distribution of copper, zinc and cadmium in the mussel, Mytilus galloprovincialis, determined by autometallography.
    Soto M; Cajaraville MP; Marigómez I
    Tissue Cell; 1996 Oct; 28(5):557-68. PubMed ID: 8858881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Fluxes from Porewaters and Labile Sediment Phases for Predicting Metal Exposure and Bioaccumulation in Benthic Invertebrates.
    Amato ED; Simpson SL; Belzunce-Segarra MJ; Jarolimek CV; Jolley DF
    Environ Sci Technol; 2015 Dec; 49(24):14204-12. PubMed ID: 26535616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limitations of Applying Diffusive Gradients in Thin Films to Predict Bioavailability of Metal Mixtures in Aquatic Systems with Unstable Water Chemistries.
    Xu X; Peck E; Fletcher DE; Korotasz A; Perry J
    Environ Toxicol Chem; 2020 Dec; 39(12):2485-2495. PubMed ID: 32845529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the Effects of Bioturbation on Metal Bioavailability in Contaminated Sediments by Diffusive Gradients in Thin Films (DGT).
    Amato ED; Simpson SL; Remaili TM; Spadaro DA; Jarolimek CV; Jolley DF
    Environ Sci Technol; 2016 Mar; 50(6):3055-64. PubMed ID: 26848961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model.
    Han S; Naito W; Hanai Y; Masunaga S
    Water Res; 2013 Sep; 47(14):4880-92. PubMed ID: 23870434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of diffusive gradients in thin films technique (DGT) for measuring Al, Cd, Co, Cu, Mn, Ni, and Zn in Amazonian rivers.
    Yabuki LN; Colaço CD; Menegário AA; Domingos RN; Kiang CH; Pascoaloto D
    Environ Monit Assess; 2014 Feb; 186(2):961-9. PubMed ID: 24052239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the DGT technique for predicting uptake of metal mixtures by fathead minnow (Pimephales promelas) and yellow lampmussel (Lampsilis cariosa).
    Philipps RR; Xu X; Bringolf RB; Mills GL
    Environ Toxicol Chem; 2019 Jan; 38(1):61-70. PubMed ID: 30284318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments.
    Amato ED; Marasinghe Wadige CPM; Taylor AM; Maher WA; Simpson SL; Jolley DF
    Environ Pollut; 2018 Dec; 243(Pt B):862-871. PubMed ID: 30245448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: first results of an experimental study.
    Roulier JL; Tusseau-Vuillemin MH; Coquery M; Geffard O; Garric J
    Chemosphere; 2008 Jan; 70(5):925-32. PubMed ID: 17888490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific heavy metal (Cd, Pb, Cu, Zn) deposition in a natural population of the zebra mussel Dreissena polymorpha Pallas.
    Gundacker C
    Chemosphere; 1999 Jun; 38(14):3339-56. PubMed ID: 10390846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bradybaena similaris (Férrusac) shell as a biomonitor of copper, cadmium, and zinc.
    Yasoshima M; Takano B
    Bull Environ Contam Toxicol; 2001 Feb; 66(2):239-48. PubMed ID: 11116320
    [No Abstract]   [Full Text] [Related]  

  • 14. Heavy metals in bivalve mussels and their habitats from different sites along the Chilean coast.
    De Gregori I; Pinochet H; Delgado D; Gras N; Muñoz L
    Bull Environ Contam Toxicol; 1994 Feb; 52(2):261-8. PubMed ID: 8123987
    [No Abstract]   [Full Text] [Related]  

  • 15. The influence of diet on comparative trace metal cadmium, copper and zinc accumulation in Thais clavigera (Gastropoda: Muricidae) preying on intertidal barnacles or mussels.
    Blackmore G; Morton B
    Mar Pollut Bull; 2002 Sep; 44(9):870-6. PubMed ID: 12405211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings.
    Lavoie I; Lavoie M; Fortin C
    Sci Total Environ; 2012 May; 425():231-41. PubMed ID: 22459883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films.
    Zhang H; Davison W
    Anal Chem; 2000 Sep; 72(18):4447-57. PubMed ID: 11008782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of copper doses to settlement plates in the field using diffusive gradients in thin films.
    Webb JA; Keough MJ
    Sci Total Environ; 2002 Oct; 298(1-3):207-17. PubMed ID: 12449338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments.
    Yin X; Liu X; Sun L; Zhu R; Xie Z; Wang Y
    Sci Total Environ; 2006 Dec; 371(1-3):252-7. PubMed ID: 16928392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn.
    Shi D; Wang WX
    Environ Pollut; 2004 Nov; 132(2):265-77. PubMed ID: 15312939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.