BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11954799)

  • 1. Controlled transient changes reveal differences in metabolite production in two Candida yeasts.
    Granström T; Leisola M
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):511-6. PubMed ID: 11954799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemostat study of xylitol production by Candida guilliermondii.
    Granström T; Ojamo H; Leisola M
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):36-42. PubMed ID: 11234956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats.
    Nobre A; Duarte LC; Roseiro JC; Gírio FM
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):509-16. PubMed ID: 12172618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation.
    Fonseca C; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602.
    Zhang Z; Qu Y; Zhang X; Lin J
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):39-51. PubMed ID: 18425610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Prikl Biokhim Mikrobiol; 2003; 39(3):302-6. PubMed ID: 12754827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions.
    Ko BS; Rhee CH; Kim JH
    Biotechnol Lett; 2006 Aug; 28(15):1159-62. PubMed ID: 16810450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of pH on the xylose reductase activity of Candida guilliermondii during fed-batch xylitol bioproduction.
    Godoy De Andrade Rodrigues DC; Da Silva SS; Vitolo M
    J Basic Microbiol; 2002; 42(3):201-6. PubMed ID: 12111747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii.
    Arruda PV; Felipe MG
    Curr Microbiol; 2009 Mar; 58(3):274-8. PubMed ID: 19034573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.
    Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on xylose fermentation by Neurospora crassa].
    Zhang X; Zhu D; Wang D; Lin J; Qu Y; Yu S
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):466-72. PubMed ID: 16276921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylose reductase activity of Candida guilliermondii during xylitol production by fed-batch fermentation: selection of process variables.
    Rodrigues DC; Da Silva SS; Almeida E Silva JB; Vitolo M
    Appl Biochem Biotechnol; 2002; 98-100():875-83. PubMed ID: 12018309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of D-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl.
    Ikeuchi T; Kiritani R; Azuma M; Ooshima H
    J Basic Microbiol; 2000; 40(3):167-75. PubMed ID: 10957958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate.
    Sampaio FC; Torre P; Passos FM; Perego P; Passos FJ; Converti A
    Biotechnol Prog; 2004; 20(6):1641-50. PubMed ID: 15575694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.