BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 11954987)

  • 1. Isolation and characterization of Bacillus cereus-like bacteria from faecal samples from greenhouse workers who are using Bacillus thuringiensis-based insecticides.
    Jensen GB; Larsen P; Jacobsen BL; Madsen B; Wilcks A; Smidt L; Andrup L
    Int Arch Occup Environ Health; 2002 Mar; 75(3):191-6. PubMed ID: 11954987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides.
    Jensen GB; Larsen P; Jacobsen BL; Madsen B; Smidt L; Andrup L
    Appl Environ Microbiol; 2002 Oct; 68(10):4900-5. PubMed ID: 12324337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis.
    Hansen BM; Hendriksen NB
    Appl Environ Microbiol; 2001 Jan; 67(1):185-9. PubMed ID: 11133444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Detection of enterotoxin genes in Bacillus thuringiensis by PCR].
    Yuan Z; Cai Q; Andrup L; Eilenberg J; Pang Y
    Wei Sheng Wu Xue Bao; 2001 Apr; 41(2):148-54. PubMed ID: 12549018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of enterotoxin genes in mosquito-larvicidal Bacillus species.
    Yuan Z; Hansen BM; Andrup L; Eilenberg J
    Curr Microbiol; 2002 Sep; 45(3):221-5. PubMed ID: 12177746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice.
    Ankolekar C; Rahmati T; Labbé RG
    Int J Food Microbiol; 2009 Jan; 128(3):460-6. PubMed ID: 19027973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption.
    Hendriksen NB; Hansen BM
    FEMS Microbiol Lett; 2006 Apr; 257(1):106-11. PubMed ID: 16553839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis.
    Asano SI; Nukumizu Y; Bando H; Iizuka T; Yamamoto T
    Appl Environ Microbiol; 1997 Mar; 63(3):1054-7. PubMed ID: 9055420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination between Bacillus cereus and Bacillus thuringiensis using specific DNA probes based on variable regions of 16S rRNA.
    te Giffel MC; Beumer RR; Klijn N; Wagendorp A; Rombouts FM
    FEMS Microbiol Lett; 1997 Jan; 146(1):47-51. PubMed ID: 8997705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR.
    Chelliah R; Wei S; Park BJ; Kim SH; Park DS; Kim SH; Hwan KS; Oh DH
    Microb Pathog; 2017 Oct; 111():22-27. PubMed ID: 28778821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular methods to evaluate biodiversity in Bacillus cereus and Bacillus thuringiensis strains from different origins.
    Manzano M; Giusto C; Iacumin L; Cantoni C; Comi G
    Food Microbiol; 2009 May; 26(3):259-64. PubMed ID: 19269566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.
    Hariram U; Labbé R
    J Food Prot; 2015 Mar; 78(3):590-6. PubMed ID: 25719886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Various Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains.
    Kim MJ; Han JK; Park JS; Lee JS; Lee SH; Cho JI; Kim KS
    J Microbiol Biotechnol; 2015 Jun; 25(6):872-9. PubMed ID: 25791850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and toxigenic characterization of Bacillus cereus and Bacillus thuringiensis strains isolated from commercial ground roasted coffee.
    Chaves JQ; Cavados Cde F; Vivoni AM
    J Food Prot; 2012 Mar; 75(3):518-22. PubMed ID: 22410226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk.
    Zhou G; Liu H; He J; Yuan Y; Yuan Z
    Int J Food Microbiol; 2008 Jan; 121(2):195-200. PubMed ID: 18077041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food.
    Rosenquist H; Smidt L; Andersen SR; Jensen GB; Wilcks A
    FEMS Microbiol Lett; 2005 Sep; 250(1):129-36. PubMed ID: 16043311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba.
    Ahaotu I; Anyogu A; Njoku OH; Odu NN; Sutherland JP; Ouoba LI
    Int J Food Microbiol; 2013 Mar; 162(1):95-104. PubMed ID: 23376783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, Isolated from food, environmental, and clinical samples by multiplex PCR.
    Forghani F; Kim JB; Oh DH
    J Food Sci; 2014 Nov; 79(11):M2288-93. PubMed ID: 25311736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of phenotypic and PCR-based approaches for routine analysis of Bacillus cereus group foodborne isolates.
    Martínez-Blanch JF; Sánchez G; Garay E; Aznar R
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):697-709. PubMed ID: 21191654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis.
    Reyes-Ramirez A; Ibarra JE
    Appl Environ Microbiol; 2005 Mar; 71(3):1346-55. PubMed ID: 15746337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.