These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11955080)

  • 1. Catalytic mechanism of enzymes: preorganization, short strong hydrogen bond, and charge buffering.
    Kim KS; Kim D; Lee JY; Tarakeshwar P; Oh KS
    Biochemistry; 2002 Apr; 41(16):5300-6. PubMed ID: 11955080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic role of enzymes: short strong H-bond-induced partial proton shuttles and charge redistributions.
    Kim KS; Oh KS; Lee JY
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6373-8. PubMed ID: 10841545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing electrostatic complementarity in enzyme catalysis: hydrogen bonding in the ketosteroid isomerase oxyanion hole.
    Kraut DA; Sigala PA; Pybus B; Liu CW; Ringe D; Petsko GA; Herschlag D
    PLoS Biol; 2006 Apr; 4(4):e99. PubMed ID: 16602823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Density in Enzyme Active Site as a Descriptor of Electrostatic Preorganization.
    Fuller J; Wilson TR; Eberhart ME; Alexandrova AN
    J Chem Inf Model; 2019 May; 59(5):2367-2373. PubMed ID: 30793899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics and quantum chemical studies on the catalytic mechanism of Delta5-3-ketosteroid isomerase: the catalytic diad versus the cooperative hydrogen bond mechanism.
    Park H; Merz KM
    J Am Chem Soc; 2003 Jan; 125(4):901-11. PubMed ID: 12537487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of catalytic residues in enzymatic mechanisms of homologous ketosteroid isomerases.
    Oh KS; Cha SS; Kim DH; Cho HS; Ha NC; Choi G; Lee JY; Tarakeshwar P; Son HS; Choi KY; Oh BH; Kim KS
    Biochemistry; 2000 Nov; 39(45):13891-6. PubMed ID: 11076530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic power of ketosteroid isomerase investigated by computer simulation.
    Feierberg I; Aqvist J
    Biochemistry; 2002 Dec; 41(52):15728-35. PubMed ID: 12501201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic efficiency of enzymes: a theoretical analysis.
    Hammes-Schiffer S
    Biochemistry; 2013 Mar; 52(12):2012-20. PubMed ID: 23240765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization.
    Kamerlin SC; Sharma PK; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4075-80. PubMed ID: 20150513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of an aromatic Claisen rearrangement via a designed spiroligozyme catalyst that mimics the ketosteroid isomerase catalytic dyad.
    Parker MF; Osuna S; Bollot G; Vaddypally S; Zdilla MJ; Houk KN; Schafmeister CE
    J Am Chem Soc; 2014 Mar; 136(10):3817-27. PubMed ID: 24456160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic contributions to binding of transition state analogues can be very different from the corresponding contributions to catalysis: phenolates binding to the oxyanion hole of ketosteroid isomerase.
    Warshel A; Sharma PK; Chu ZT; Aqvist J
    Biochemistry; 2007 Feb; 46(6):1466-76. PubMed ID: 17279612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of a low-barrier hydrogen bond to catalysis is not significant in ketosteroid isomerase.
    Jang DS; Choi G; Cha HJ; Shin S; Hong BH; Lee HJ; Lee HC; Choi KY
    Mol Cells; 2015 May; 38(5):409-15. PubMed ID: 25947291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric Fields and Enzyme Catalysis.
    Fried SD; Boxer SG
    Annu Rev Biochem; 2017 Jun; 86():387-415. PubMed ID: 28375745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the hydrogen-bond network involving a tyrosine triad in the active site to the structure and function of a highly proficient ketosteroid isomerase from Pseudomonas putida biotype B.
    Kim DH; Jang DS; Nam GH; Choi G; Kim JS; Ha NC; Kim MS; Oh BH; Choi KY
    Biochemistry; 2000 Apr; 39(16):4581-9. PubMed ID: 10769113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The catalytic role of aspartate in a short strong hydrogen bond of the Asp274-His32 catalytic dyad in phosphatidylinositol-specific phospholipase C can be substituted by a chloride ion.
    Zhao L; Liao H; Tsai MD
    J Biol Chem; 2004 Jul; 279(31):31995-2000. PubMed ID: 15155721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole.
    Sigala PA; Kraut DA; Caaveiro JM; Pybus B; Ruben EA; Ringe D; Petsko GA; Herschlag D
    J Am Chem Soc; 2008 Oct; 130(41):13696-708. PubMed ID: 18808119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric Fields and Fast Protein Dynamics in Enzymes.
    Zoi I; Antoniou D; Schwartz SD
    J Phys Chem Lett; 2017 Dec; 8(24):6165-6170. PubMed ID: 29220191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Critical Test of the Electrostatic Contribution to Catalysis with Noncanonical Amino Acids in Ketosteroid Isomerase.
    Wu Y; Boxer SG
    J Am Chem Soc; 2016 Sep; 138(36):11890-5. PubMed ID: 27545569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulations of enzyme catalysis: methods, progress, and insights.
    Warshel A
    Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.