These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 11955101)
21. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Liang H; Li QX; Shi BC; Chai ZH Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453 [TBL] [Abstract][Full Text] [Related]
22. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension. Garnier J; Cherfils-Clérouin C; Holstein PA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897 [TBL] [Abstract][Full Text] [Related]
23. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034 [TBL] [Abstract][Full Text] [Related]
25. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability. Matsuoka C; Nishihara K; Fukuda Y Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159 [TBL] [Abstract][Full Text] [Related]
26. Stability boundaries for the Rayleigh-Taylor instability in accelerated elastic-plastic solid slabs. Piriz AR; Piriz SA; Tahir NA Phys Rev E; 2019 Dec; 100(6-1):063104. PubMed ID: 31962442 [TBL] [Abstract][Full Text] [Related]
27. Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability. Sadot O; Smalyuk VA; Delettrez JA; Meyerhofer DD; Sangster TC; Betti R; Goncharov VN; Shvarts D Phys Rev Lett; 2005 Dec; 95(26):265001. PubMed ID: 16486364 [TBL] [Abstract][Full Text] [Related]
28. Nonlinear theory of the ablative Rayleigh-Taylor instability. Sanz J; Ramírez J; Ramis R; Betti R; Town RP Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120 [TBL] [Abstract][Full Text] [Related]
29. Nonlinear Rayleigh-Taylor growth in converging geometry. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591 [TBL] [Abstract][Full Text] [Related]
30. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
31. Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry. Matsuoka C; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066303. PubMed ID: 17280144 [TBL] [Abstract][Full Text] [Related]
32. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution. Fan Z; Dong M Phys Rev E; 2020 Jun; 101(6-1):063103. PubMed ID: 32688480 [TBL] [Abstract][Full Text] [Related]
33. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation. Dong M; Fan Z; Yu C Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233 [TBL] [Abstract][Full Text] [Related]
34. Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability. Abarzhi SI; Nishihara K; Rosner R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036310. PubMed ID: 16605654 [TBL] [Abstract][Full Text] [Related]
36. Simple model for mixing at accelerated fluid interfaces with shear and compression. Ramshaw JD Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5339-44. PubMed ID: 11031582 [TBL] [Abstract][Full Text] [Related]
37. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability. Lau YY; Zier JC; Rittersdorf IM; Weis MR; Gilgenbach RM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066405. PubMed ID: 21797496 [TBL] [Abstract][Full Text] [Related]
38. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach. Poujade O; Peybernes M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469 [TBL] [Abstract][Full Text] [Related]
39. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids. Rollin B; Andrews MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305 [TBL] [Abstract][Full Text] [Related]
40. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability. Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]