These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11955149)

  • 1. Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves.
    Deng L; Kozuma M; Hagley EW; Payne MG
    Phys Rev Lett; 2002 Apr; 88(14):143902. PubMed ID: 11955149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibiting the onset of the three-photon destructive interference in ultraslow propagation-enhanced four-wave mixing with dual induced transparency.
    Deng L; Payne MG
    Phys Rev Lett; 2003 Dec; 91(24):243902. PubMed ID: 14683121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves".
    Buffa R; Cavalieri S; Tognetti MV
    Phys Rev Lett; 2004 Sep; 93(12):129401; author reply 129402. PubMed ID: 15447317
    [No Abstract]   [Full Text] [Related]  

  • 4. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows.
    Zhang Y; Brown AW; Xiao M
    Phys Rev Lett; 2007 Sep; 99(12):123603. PubMed ID: 17930503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference.
    Wu Y; Payne MG; Hagley EW; Deng L
    Opt Lett; 2004 Oct; 29(19):2294-6. PubMed ID: 15524385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels.
    Zhang Y; Khadka U; Anderson B; Xiao M
    Phys Rev Lett; 2009 Jan; 102(1):013601. PubMed ID: 19257191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of quantum destructive interference in inelastic two-wave mixing.
    Jiang KJ; Deng L; Payne MG
    Phys Rev Lett; 2007 Feb; 98(8):083604. PubMed ID: 17359100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum entanglement of Fock states with perfectly efficient ultraslow single-probe photon four-wave mixing.
    Payne MG; Deng L
    Phys Rev Lett; 2003 Sep; 91(12):123602. PubMed ID: 14525363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase control of highly efficient four-wave mixing in a six-level tripod atomic system.
    Zhang H; Li X; Sun D; Li H; Sun H
    Appl Opt; 2018 Jan; 57(3):567-572. PubMed ID: 29400782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow-light six-wave mixing at low light intensities.
    Kang H; Hernandez G; Zhu Y
    Phys Rev Lett; 2004 Aug; 93(7):073601. PubMed ID: 15324236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of dispersion on the resonant interaction between three incoherent waves.
    Picozzi A; Aschieri P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046606. PubMed ID: 16383553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide.
    Xu J; Huang G
    Opt Express; 2013 Feb; 21(4):5149-63. PubMed ID: 23482049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency.
    Wang G; Cen L; Qu Y; Xue Y; Wu JH; Gao JY
    Opt Express; 2011 Oct; 19(22):21614-9. PubMed ID: 22109010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence of three-wave, four-wave, and five-wave mixing processes in a superconducting artificial atom.
    Li HC; Ge GQ; Zhang HY
    Opt Lett; 2015 Mar; 40(6):1133-6. PubMed ID: 25768200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double- system.
    Huang G; Jiang K; Payne MG; Deng L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056606. PubMed ID: 16803056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-wave mixing in slow light engineered silicon photonic crystal waveguides.
    Monat C; Ebnali-Heidari M; Grillet C; Corcoran B; Eggleton BJ; White TP; O'Faolain L; Li J; Krauss TF
    Opt Express; 2010 Oct; 18(22):22915-27. PubMed ID: 21164630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced four-wave mixing in quantum cascade semiconductor optical amplifier.
    Hekmat B; Ahmadi V; Darabi E
    Appl Opt; 2013 Apr; 52(12):2828-33. PubMed ID: 23669694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherence properties of amplified slow light by four-wave mixing.
    Hsiao YF; Tsai PJ; Lin CC; Chen YF; Yu IA; Chen YC
    Opt Lett; 2014 Jun; 39(12):3394-7. PubMed ID: 24978494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced four-wave mixing for superresolution applications.
    Simkhovich B; Bartal G
    Phys Rev Lett; 2014 Feb; 112(5):056802. PubMed ID: 24580620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competing four-wave mixing processes in dispersion oscillating telecom fiber.
    Finot C; Fatome J; Sysoliatin A; Kosolapov A; Wabnitz S
    Opt Lett; 2013 Dec; 38(24):5361-4. PubMed ID: 24322258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.