These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11955204)

  • 1. Thermodynamic discontinuity between low-density amorphous ice and supercooled water.
    Shpakov VP; Rodger PM; Tse JS; Klug DD; Belosludov VR
    Phys Rev Lett; 2002 Apr; 88(15):155502. PubMed ID: 11955204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2009 Jul; 113(30):10298-307. PubMed ID: 19585976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point.
    Mishima O; Suzuki Y
    Nature; 2002 Oct; 419(6907):599-603. PubMed ID: 12374974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of high density amorphous ice by decompression of ice VII and ice VIII at 135 K.
    McBride C; Vega C; Sanz E; Abascal JL
    J Chem Phys; 2004 Dec; 121(23):11907-11. PubMed ID: 15634152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and thermodynamic properties of different phases of supercooled liquid water.
    Jedlovszky P; Pártay LB; Bartók AP; Voloshin VP; Medvedev NN; Garberoglio G; Vallauri R
    J Chem Phys; 2008 Jun; 128(24):244503. PubMed ID: 18601345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous and Discontinuous Dynamic Crossover in Supercooled Water in Computer Simulations.
    Ma Z; Li J; Wang F
    J Phys Chem Lett; 2015 Aug; 6(16):3170-4. PubMed ID: 27476514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the structure of amorphous ice: from low-density amorphous through high-density amorphous to very high-density amorphous ice.
    Martonák R; Donadio D; Parrinello M
    J Chem Phys; 2005 Apr; 122(13):134501. PubMed ID: 15847475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growing correlation length in supercooled water.
    Moore EB; Molinero V
    J Chem Phys; 2009 Jun; 130(24):244505. PubMed ID: 19566164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.
    Buhariwalla CR; Bowles RK; Saika-Voivod I; Sciortino F; Poole PH
    Eur Phys J E Soft Matter; 2015 May; 38(5):124. PubMed ID: 25985943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models.
    Brovchenko I; Geiger A; Oleinikova A
    J Chem Phys; 2005 Jul; 123(4):044515. PubMed ID: 16095377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting the Water Phase Diagram to the Metastable Domain: High-Pressure Studies in the Supercooled Regime.
    Fanetti S; Pagliai M; Citroni M; Lapini A; Scandolo S; Righini R; Bini R
    J Phys Chem Lett; 2014 Nov; 5(21):3804-9. PubMed ID: 26278751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four phases of amorphous water: Simulations versus experiment.
    Brovchenko I; Oleinikova A
    J Chem Phys; 2006 Apr; 124(16):164505. PubMed ID: 16674144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of amorphous forms when ice is compressed at low temperature.
    Tulk CA; Molaison JJ; Makhluf AR; Manning CE; Klug DD
    Nature; 2019 May; 569(7757):542-545. PubMed ID: 31118522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-density amorphous ice: a path-integral simulation.
    Herrero CP; Ramírez R
    J Chem Phys; 2012 Sep; 137(10):104505. PubMed ID: 22979872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and OH-stretch spectroscopy of low- and high-density amorphous ices.
    Tainter CJ; Shi L; Skinner JL
    J Chem Phys; 2014 Apr; 140(13):134503. PubMed ID: 24712797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice and water droplets on graphite: a comparison of quantum and classical simulations.
    Ramírez R; Singh JK; Müller-Plathe F; Böhm MC
    J Chem Phys; 2014 Nov; 141(20):204701. PubMed ID: 25429951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition.
    Woutersen S; Ensing B; Hilbers M; Zhao Z; Angell CA
    Science; 2018 Mar; 359(6380):1127-1131. PubMed ID: 29590040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-order transition in confined water between high-density liquid and low-density amorphous phases.
    Koga K; Tanaka H; Zeng XC
    Nature; 2000 Nov; 408(6812):564-7. PubMed ID: 11117739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.